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After-class reading list 

 Fundamentals of Inorganic Glasses 

 Ch. 8, Ch. 13, Appendix A 

 Introduction to Glass Science and Technology 

 Ch. 9 (does not cover relaxation) 

Mathematics is the language with 
which God wrote the Universe. 

Galileo Galilei 
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Where and why does liquid end and glass begin? 

“What don’t we know?” Science 309, 83 (2005). 
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Viscoelasticity: complex shear modulus 

 Consider a sinusoidally varying shear strain 

 

 Elastic response: 

 Viscous response: 

 
 In a general viscoelastic solid: 

 0 exp
xy

xy xyi i t i
t


      


    



 0 expxy i t   

 0 expxy xyG G i t     

  *

xy xy xyG i G       

G* : complex shear modulus 

* ' "G G i G Gi   

Shear/storage modulus 

Loss modulus 
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Phenomenological models of viscoelastic materials

 Elasticity: Hookean spring 

 Viscosity: Newtonian dashpot 

 xy  G xy

 xy
 xy  

t

 Models assume linear material response or infinitesimal 
stress 

 Each dashpot element corresponds to a relaxation 
mechanism
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The Maxwell element 

 Serial connection of a Hookean spring and a Newtonian dashpot 

 Total stress: 

 Total strain: 
VE  

VE  

 E  G E
VV  
t
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The Maxwell element 

E EG  V
V

t


 


 



 Constant stress (creep): 

 

 

 Constant strain (stress relaxation): 

 consta  nt 0E V t    
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t
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

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t
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    

  
expE
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 



 
  

  G


  Relaxation 

time 
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The Maxwell element 

 E  G E
VV  
t

 Oscillatory strain: 

   E V 0 exp  i t

 2 2

G '  
1 2 2 G
 

G" 
 

1 2 2 G
 
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The Voigt-Kelvin element 

 Parallel connection of a Hookean 

spring and a Newtonian dashpot 

 Total stress: 

 Total strain: 

 Constant strain: 

 Constant stress: 

E EG 

V
V

t


 


 



VE  

VE  

G 

1 exp
t

G






  
    

  

 Oscillatory strain:  0 exp i t  

'G G "G G 
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Generalized Maxwell model 

…

 

G

1G

2G

1

2

 For each Maxwell component: 

 Total stress: 

  i 1 1
  

t  G t i
 i i 

  1  i   
t G i i

1 ... ...i     

  G  1  ...  i  ...

i
i

iG


 
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Generalized Maxwell model 

…

 

G

1G

2G

1

2

 Stress relaxation: 

 Prony series: 

  G  1  ...  i  ...

  t
  G G exp   i 
  i0  i

 G exp   t G
      
   R 

 consta 0nt t  

In real solids, a multitude of microscopic 
relaxation processes give rise to dispersion 
of relaxation time (stretched exponential) 
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Elastic, viscoelastic, and viscous responses 

Stress 

t 

Stress 

t 

Stress 

t 

Elastic strain 

t 

Viscoelastic strain 

t 

Viscous strain 

t 
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Viscoelastic materials 

Mozzarella cheese Human skin Turbine blades 

Volcanic lava Memory foams 
Naval ship propellers 
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Image of Naval ship propellers is in the public domain. Various images © unknown. Lava image © Lavapix on YouTube. All rights reserved.

This content is excludedfrom our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

 

https://www.youtube.com/user/lavapix/videos
http://ocw.mit.edu/help/faq-fair-use/


Boltzmann superposition principle 

 In the linear viscoelastic regime, the stress (strain) responses to 
successive strain (stress) stimuli are additive 

t 

t1 

Stress 

t 

t1 

1

 1 11 tG t    

Strain 

t 

t2 

Stress 

t 

t2 

2

Strain 

 2 22 tG t    

t 

Stress 

t 

1

1 2   

Strain 
2
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Boltzmann superposition principle 

 In the linear viscoelastic regime, the stress (strain) responses to 

successive strain (stress) stimuli are additive 

t 
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 Viscoelastic response 

is history-dependent 

 Relaxation function  

dictates time-domain 

response 
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Structural relaxation in glass

T

Elastic regime Viscoelastic regime

Glassy state

Supercooled
liquid

Viscous regime

V

Glass transition

 re  tobs  re ~ tobs  re  tobs

All mechanical and Glass structure and Structural changes
thermal effects only 
affect atomic vibrations

properties are history-
dependent

are instantaneous:
equilibrium state can 
be quickly reached

Ergodicity breakdown
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Structural relaxation in glass

T

1DN 

Viscoelastic regime

~ 1DN

Glassy state

Supercooled
liquid

Viscous regime

1DN 

V

Glass transition

Elastic regime

re obsDN tDebroah number (DN):

“… the mountains flowed before the Lord…” 
Prophetess Deborah (Judges 5:5) 
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Comparing stress relaxation and structural relaxation 

 “Equilibrium” state

 Zero stress state 
 Driving force 
 Residual stress 

 Relaxation kinetics 
 Exponential decay with 

a single relaxation time 
 Relaxation rate scales 

with driving force 

V

T

 “Equilibrium” state

 Supercooled liquid state
 Driving force
 Free volume

 Relaxation kinetics
 Exponential decay with

a single relaxation time
 Relaxation rate scales

with driving force

f eV V V 
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Free volume model of relaxation (first order 
kinetic model)

V

T

 Relaxation kinetics at 
constant temperature

   

   

Vf et V t V

V tf  0  exp t  re

V Vf f
  

t  re

 Temperature dependence of relaxation

  E EV  f f  a a V V
 re  0 exp      exp 

k TB t t  
    0  k TB
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Model predicted relaxation kinetics 

Cooling rate: 10 °C/s 

Varying reheating rate 

10 °C/s 

1 °C/s 

0.1 °C/s 

Slope: volume CTE 

of supercooled liquid 
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Model predicted relaxation kinetics 

Varying cooling rate 

Reheating rate: 1 °C/s 

100 °C/s 

10 °C/s 

1 °C/s 

Fictive temperature and 

glass structure are 

functions of cooling rate 
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Tool’s Fictive temperature theory 

 Fictive temperature Tf : the 

temperature on the supercooled 

liquid curve at which the glass 

would find itself in equilibrium 

with the supercooled liquid state 

if brought suddenly to it 

 With increasing cooling rate: 

 Tf1 < Tf2 < Tf3 

 A glass state is fully described 

by thermodynamic parameters 

(T, P) and Tf 

 Glass properties are functions of 

temperature and Tf (structure) 

Tf1 

Supercooled 

liquid 

Increasing 

cooling rate 

3 

2 

1 

Tf2 Tf3 

V, H 

T 

 , fV V T T  , fH H T T

23 



Tool’s Fictive temperature theory 

 Glass property change in the 

glass transition range consists 

of two components 

 Temperature-dependent 

property evolution without 

modifying glass structure 

 

 

 Property change due to 

relaxation (Tf change) Tf1 

Supercooled 

liquid 

V, H 

Increasing 

cooling rate 

3 

2 

1 

Tf2 Tf3 

Volume:   ,
f

V gT
V T   

Enthalpy:   ,
f

P gT
H T C  

Volume:   , ,f V e V gT
V T     

Enthalpy:   , ,f P e P gT
H T C C   

T 

 , fV V T T  , fH H T T
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Tool’s Fictive temperature theory 

 Glass property change in the 

glass transition range consists 

of two components 

T Tf1 

Supercooled 

liquid 

V, H 

Increasing 

cooling rate 

3 

2 

1 

Tf2 Tf3 

 

 , , ,

,

f

f f

T f T

f

V g V e V g

dV T T dTV V

dT T T dT

dT dT

dt dt
  

   
          

   

 

 , , ,

,

f

f f

T f T

f

P g P e P g

dH T T dTH H

dT T T dT

dT dT
C C C

dt dt

   
          

    , fV V T T  , fH H T T
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T 

Predicting glass structure evolution due to relaxation: 

Tool’s equation 

Tf 

P (V, H, S, etc.) 

Supercooled 

liquid 

Glass 

Consider a glass sample 

with Fictive temperature Tf 

Pg - Pe 

Tf - T 

 ge
fg eP P

P
T T

P

T T

 
   

  


g g fe
dP P dTP

dt T T dt

 
    

  

g g e

re

dP P P

dt 


 

Take time derivative: 

Assume first-order relaxation: 









f f

re

dT T T

dt 


  Tool’s equation 
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Tool’s Fictive temperature theory 

f f

re

dT T T

dt 


 

J. Am. Ceram. Soc. 29, 240 (1946) 

 

 , , ,

,

f

f f

T f T

f

P g P e P g

dH T T dTH H

dT T T dT

dT dT
C C C

dt dt

   
          

   

Tool’s equation 

Line : fD'M T T
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Difficulties with Tool’s Tf theory 

 Ritland experiment: two groups of glass samples of identical 

composition were heat treated to obtain the same refractive index 

via two different routes 

 Group A: kept at 530°C for 24 h 

 Group B: cooled at 16°C/h through the glass transition range 

 Both groups were then placed 

in a furnace standing at 530°C 

and their refractive indices 

were measured as a function 

of heat treatment time 

 Glass structure cannot be 

fully characterized by the 

single parameter Tf 

J. Am. Ceram. Soc. 39, 403 (1956). 
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Explaining the Ritland experiment 

t 

n

 ,1exp ret 

 ,2exp ret 

Structural relaxation in glass involves multiple structural entities 
and is characterized by a multitude of relaxation time scales 

Tool-Narayanaswamy-Moynihan (TNM) model
29 

http://www.lehigh.edu/imi/teched/Relax2010/Lecture15_loucks.pdf


What is relaxation? 
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Relaxation: return of a perturbed system into equilibrium 

 Examples 

 Stress and strain relaxation in viscoelastic solids 

 Free volume relaxation in glasses near Tg 

 Glass structural relaxation (Tf change) 

 Time-dependent, occurs even after stimulus is removed 

 Debroah Number: 

 DN >> 1: negligible relaxation due to sluggish kinetics 

 DN << 1: system always in equilibrium 

 DN ~ 1: system behavior dominated by relaxation 

re obsDN t
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Modeling relaxation 

 Maxwellian relaxation models 

   0 expe e

re

t
P t P P P



 
     

 

 Boltzmann superposition principle in linear systems 

   0 expe e

re

t
P t P P P





 
     

 

   
0

' ' '
t

SR IRF t tt dt    
0 0

' '
'

t t

t t
d

dt dt
dt

d

dt
G


 


    

 't t
d

G t
dt

 


    'R IRF t t tS    

e

re

P PP

t 


 




Relaxation 

rate 

Driving 

force 
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“The Nature of Glass Remains Anything but Clear”

 Free volume relaxation theory 

 

 

 Tool’s Fictive temperature theory 

 Uses a single parameter Tf to label glass structure 

 Tool’s equation (of Tf relaxation) 

 

 

 Structural relaxation in glass involves multiple structural entities 

and is characterized by a multitude of relaxation time scales 

 The Ritland experiment 

f f

re

dT T T

dt 


 

0

exp
f a

B

V EV

t k T





 
    

  
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http://www.nytimes.com/2008/07/29/science/29glass.html?pagewanted=all&_r=0
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