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After-class reading list 

 Fundamentals of Inorganic Glasses 

 Ch. 3 (except section 3.1.4) 

 Introduction to Glass Science and Technology 

 Ch. 2 

 3.022 nucleation, precipitation growth and interface 

kinetics 

 Topological constraint theory 

 M. Thorpe, “Continuous deformations in random networks” 

 J. Mauro, “Topological constraint theory of glass” 
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Glass formation from liquid 
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Glass forming theories 

 The kinetic theory 

 Nucleation and growth 

 “All liquids can be vitrified provided that the rate of 

cooling is fast enough to avoid crystallization.” 

 Laboratory glass transition 

 Potential energy landscape 

 Structural theories 

 Zachariasen’s rules 

 Topological constraint theory 

4 



Crystallization is the opposite of glass formation 

Crystallized Amorphous 

Suspended Changes in Nature, Popular Science 83 (1913). 

Image is in the public domain.



Thermodynamics of nucleation 
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Thermodynamics of nucleation 
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Kinetics of nucleation 
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Kinetics of growth 
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Kinetics of growth 
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Crystal nucleation and growth 
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Time-temperature-transformation diagram 
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Critical cooling rate and glass formation 

Technique 

Typical 

cooling rate 

(°C/s) 

Air quench 1-10 

Liquid quench 103 

Droplet spray 102-104 

Melt spinning 105-108 

Selective laser 

melting 
106-108 

Vapor deposition Up to 1014 

Material 
Critical cooling 

rate (°C/s) 

Silica 9 × 10-6 

GeO2 3 × 10-3 

Na2O·2SiO2 6 × 10-3 

Salol 10 

Water 107 

Vitreloy-1 1 

Typical metal 109 

Silver 1010 

max ~
c

T
d

R

 
Maximum glass sample thickness:  : thermal diffusivity 
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Glass formation from liquid 
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 Glasses obtained at 

different cooling rates 

have different structures 

 With infinitely slow 

cooling, the ideal glass 

state is obtained 
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Potential energy landscape (PEL) 

 The metastable glassy state 
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Potential energy landscape (PEL) 
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Laboratory glass transition 

 Liquid: ergodic 

 Glass: nonergodic, 

confined to a few 

local minima 

 

 Inter-valley 

transition time t : 
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Glass formers Network modifiers Intermediates 

 Glass former: high valence 

state, covalent bonding with O 

 Modifier: low valence state, 

ionic bonding with O 
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Zachariasen’s rules 

Rules for glass formation in an oxide AmOn 

 An oxygen atom is linked to no more than two atoms of A 

 The oxygen coordination around A is small, say 3 or 4 

 Open structures with covalent bonds 

 Small energy difference between glassy and crystalline states 

 The cation polyhedra share corners, not edges, not faces 

 Maximize structure geometric flexibility 

 At least three corners are shared 

 Formation of 3-D network structures 

 Only applies to most (not all!) oxide glasses 

 Highlights the importance of network topology 
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Classification of glass network topology 
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Number of constraints 

Denote the atom coordination number as r 

 Bond stretching constraint: 

 Bond bending constraint: 

 One bond angle is defined when r = 2 

 Orientation of each additional bond is specified by two angles 

 Total constraint number: 

 

 Mean coordination number: 
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Isostatic condition / rigidity percolation threshold 

 Total number of degrees of freedom: 

 Isostatic condition: 

 

 Examples: 

 GexSe1-x 

 AsxS1-x 

 SixO1-x 

23 rn 

 2 23 2.5 3 2.4r rn r n   r     

 4 1 2 2 2r x x x      

 3 1 2 2r x x x      

 4 1 2 2 2r x x x      

Why oxides and chalcogenides make good glasses? 
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Temperature-dependent constraints 

 The constraint number should be evaluated at the glass 

forming temperature (rather than room temperature) 

 Silica glass SixO1-x 

 Bond stretching 

 

 

 O-Si-O bond angle 

 

 Isostatic condition 
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Si-O-Si bond angle in silica glass 
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Temperature-dependent constraints 

 Each type of constraint is associated with an onset 

temperature above which the constraint vanishes 

“Topological constraint theory of glass,” ACerS Bull. 90, 31-37 (2011). 
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Enumeration of constraint number 

Bond stretching constraints (coordination number): 

 8-N rule: applies to most covalently bonded nonmetals (O, S, Se, 

P, B, As, Si, etc.) 

 Exceptions: heavy elements (e.g. Te, Sb) 

# 2 3BB r 

Bond bending constraints: 

 Glasses with low forming temperature: 

 

 Atomic modeling or experimental 

characterization required to ascertain 

the number of active bond bending 

constraints 
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Property dependence on network rigidity 

 Many glass properties exhibit extrema or kinks at the 

rigidity percolation threshold 2.4r 

J. Non-Cryst. Sol. 185, 289-296 (1995). 
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Measuring glass forming ability 

 Figure of merit (FOM): 

 Tx : crystallization temperature 

 Tg : glass transition temperature 

x gT T T  

T 

CP 

Tg 

 Tg is dependent on 

measurement method 

and thermal history 

 Alternative FOM: 

 
    Hruby coefficient 
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27 



Summary 

 Kinetic theory of glass formation 

 Driving force and energy barrier for nucleation and growth 

 Temperature dependence of nucleation and growth rates 

 T-T-T diagram and critical cooling rate 

 Laboratory glass transition 

 Potential energy landscape 

 Ergodicity breakdown: laboratory glass transition 

 Path dependence of glass structure 

 Glass network topology theories 

 Zachariasen’s rules 

 Topological constraint theory 

 Parameters characterizing glass forming ability (GFA) 
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