
Example:  Uniaxial Deformation
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Uniaxial Deformation cont’d
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At small extensions, the stress behavior is Hookean (Fx ~ const αx)
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Usually the entropic stress of an elastomeric network is written in terms of Mx
where Mx = avg. molecular weight of subchain between x-links

uniaxial

mass /vol
molesofcrosslinks /volume

  =



Young’s Modulus of a Rubber

Notice that Young’s Modulus of a rubber is :
1. Directly proportional to temperature
2. Indirectly proportional to Mx

• Can measure modulus of crosslinked rubber to derive Mx

• In an analogous fashion, the entanglement network of a melt, gives
rise to entropic restoring elastic force provided the time scale of the 
measurement is sufficiently short so the chains do not  slip out of 
their entanglements.  In this case, we can measure modulus of 
non-crosslinked rubber melt to derive Me ! 
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Stress-Uniaxial Extension Ratio Behavior of Elastomers

tensile

σ(α)

Image removed due to copyright restrictions.

Please see Fig. 5 in Treloar, L. R. G. “Stress-
Strain Data for Vulcanised Rubber Under 
Various Types of Deformation.” Transactions 
of the Faraday Society 40 (1944): 59-70
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Rubber Demos

Tg for Happy Ball and Unhappy Ball

Deformation of Rubber to High Strains

Heating a Stretched Rubber Band

How stretchy is a gel?



Gel – A Highly Swollen Network
Several ways to form a gel:
• Start with a polymer melt and produce a 3D network 

(via chemical or physical crosslinks) and then swell it with
a solvent

• Start with a concentrated polymer solution and induce 
network formation, for example, crosslink the polymer by:

• Radiation- (UV, electron beam) (covalent bonds)
• Chemical- (e.g. divinyl benzene & PS) (covalent bonds)
• Physical Associations - (noncovalent bonds induced by

lowering the temperature or adding a nonsolvent)

Q:  describe some types of physical (ie noncovalent) crosslinks

divinyl benzenestyrene
Example:



Flory-Rehner Treatment of Gels
• Assumes elastic effect and mixing effect are linearly additive

elasticGΔ

elasticmix GGG Δ+Δ=Δ

Polymer-solvent Thermodynamics, mixGΔ

Flory Huggins Theory (χ, x1, x2, φ1, φ2)

solvent

mix

deform

Rubber Elasticity Theory



Flory-Rehner Theory
elasticmix GGG Δ+Δ=Δ

At equilibrium, elasticmix GG Δ−=Δ
1. Thermodynamically good solvent swells rubber

• favorable χ interaction
• favorable ΔSmix

2. BUT Entropy elasticity of network (ΔSelastic) exerts retractive force to
to oppose swelling

Swollen Rubber
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Crosslinked Rubber
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Thermo of Swollen Network cont’d
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ΔGmix and Flory Huggins
• n1 moles of solvent  [n1 + n2x2]NA = N0
• n2 moles of polymer
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ΔGelastic and Rubber Elasticity
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ΔGelastic cont’d
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ΔGelastic cont’d
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Determination of χ12, Mx from Swelling Experiments

I. Generally ρ, v1 are known

φ2 measured from equilibrium swelling ratio      

If Mx is known from elastic modulus of dry rubber 
then, χ12 available from single swelling experiment 

II. ρ, v1, φ1, φ2 known as above 

Assume, χ12 known from        measurements for polymer-
solvent solution.  Then, Mx available from single swelling 
experiment 

0V
V

zc
π

The Most Relaxed Gel: Swell polymer in a θ solvent so that the chains 
overlap and then crosslink.  In this case, swollen chains have their 
unperturbed dimensions. Mx will be large since there are fewer
subchains per unit volume in the dilute and swollen state (c2 ~ c2

* in 
order to form network).  The maximum extension of this type of gel 
can be HUGE!!



Practice Problems to Try

(1)  Calculate Mx from known swelling ratio and  
 

4
0

=
V
V

  =1.0g/cm3   cm3/mole 
 = Š 0.2                     ANS:400 g/mole 

 
 

(2)  Suppose Mx=5,000 g/mole  and  = 0.5, 
=1.0g/cm3,   

 
 

What is the % solvent in the network for 
equilibrium swelling? 

401 =v

v1 = 40  cm3 /mole

End of material that will be covered by the 1st exam.



Self Organization

• Competing interactions:  Enthalpy (H) vs. Entropy (S)

• Free energy landscape:  entropic frustration, multiple pathways

• Order forming processes
- (Macro)Phase separation
- Microphase separation
- Mesophase formation
- Adsorption/complexation
- Crystallization

• Selection of symmetries and characteristic lengths
- Chemical affinities (long range correlations)
- Interfacial tension

Homogeneous
state

Order 

Disorder
Order Structurally

ordered state
Structurally
ordered state

Muthukumar, M., Ober, C.K. and Thomas, E.L., "Competing Interactions
and Levels of Ordering in Self-Organizing Materials," Science, 277, 1225-1237 (1997).



Competing Interactions and Levels of Ordering in
Self-Organizing (Soft) Materials

Materials
• liquid crystals
• block copolymers
• hydrogen bonded complexes
• nanocrystals

Structural order over many length scales
• atomic
• molecular
• mesogens
• domains 
• grains

Outcome:
Precise shapes, structures and functions

increasing size scale



Strategic Design for Materials with Multiple Length Scales

• Synthetic design strategy
- Intramolecular shapes and interaction sites (molecular docking, etc)
- Control multistep processing to achieve long range order

• Interactions
- sequential Reduction of disorder (S  )
- simultaneous
- synergistic Strengthening of intra- and
- antagonistic inter-molecular interactions

• Structural design strategy
- organize starting from initially homogeneous state
- organize from largest to smallest length scale

(induce a global pattern, followed by sequential development of finer details)
• Selection of growth directions

- applied bias field(s)
- substrate patterning

• Prior-formed structures impose boundary conditions
- commensuration of emergent and prior length scales
- compatibility of structures across interfaces

(H  )



Principles of Self Organization:
Microphase Separation Block Copolymers

• Minimize interfacial area 
• Maximize chain conformational entropy

Result:
• Morphology highly coupled to molecular characteristics
• Morphology serves as a sort of molecular probe

Gas of junctions
Junctions on 
Surfaces

The min - max principle:

Homogeneous
Disordered State Ordered State

IMDS

T < TODT

Figure by MIT OCW.



Microdomain Morphologies and Symmetries
- Diblock Copolymers

Spheres Cylinders Double
Gyroid

Double
Diamond

Lamellae

0-21% 21-33% 33-37% 37-50%

IMDS

"A" block "B" block

Junction pointIncreasing volume fraction of minority phase polymer

Figure by MIT OCW.



Hierarchical Structure & Length Scales

[ CH2    CH   CH    CH2]n
Polybutadiene

[ CH2   CH]n

Polystyrene

-0.5 nm

-40 nm

loop

bridge

-20 nm

Figure by MIT OCW.



Computing the characteristic length scale:
Equilibrium Domain Spacing

2
λ

Sharp Interface ,∑ γAB

Min-Max Principle

G = Free Energy per Chain
N = # of segments = NA + NB
a = Step Size
λ = Domain Periodicity 
Σ = Interfacial Area/Chain 
γAB = Interfacial Energy =  

BA a~a
segmental
volume ~ a3

6a
kT AB

2
χ

= Segment - Segment Interaction Parameter = [ ]⎥⎦
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Strong Segregation Limit → Nχ very large (high MW and positive χ), 

=> pure A domains & pure B microdomains



Characteristic Period (Lamellae)
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Free Energy of Lamellae con’t

Thus, the optimum period of the lamellae repeat unit is :

λopt =
α
2β

3 ≅ aN 2 / 3χ1/ 6

Important Result:  Domain dimensions scale as 
Chains in microdomains are therefore stretched
compared to the homogeneous melt state

3/2N~λ

ΔG(λopt ) = 1.2kTN1 3 χAB
1 3 −

3
2

kT



Order-Disorder Transition (ODT)

Estimating the Order-Disorder Transition:

GLAM ≅ GDisordered

For  a 50/50 volume fraction, so4/1BA =φφ

4/NN2.1 3/13/1 χ=χ

5.10N <χ

5.10N >χ

Homogeneous, Mixed Melt
Lamellar Microdomains

1.2kTN1/ 3χ1/ 3 ≈ Nχ

Original Order-Disorder Diblock Phase Diagram computed by L. Leibler ,    Macromolecules, 1980

ABφAφB kT since both terms  >> Tk
2
3

5.10~)8.4()N( 2/3
c =χThe critical Nχ is just



Diblock Copolymer Morphology Diagram
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Figure by MIT OCW.

Figure by MIT OCW.
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