
Membrane Osmometry (    , A2, χ)
• Osmotic pressure, π, is a colligative property which depends only on 

the number of solute molecules in the solution.
• In a capillary membrane osmometer, solvent flow occurs until π

increases to make the chemical potential μ(π) = μ1
o
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Membrane Osmometry cont’d

μ1
° = μ1 +
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∫ V 1dP = μ1 +πV 1
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Recall F-H expression for  a dilute solution (φ2 small):
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Since solution is dilute: V ≅ n1V1 so V 1 ≅ V1
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The osmotic pressure is 
a power series 
in          i.e., π depends 
on the number of 
molecules of solute 
per unit volume of the 
solution.
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Osmotic Pressure cont’d
• For a polydisperse polymer solution,                where ni is the number of moles 

of polymer of molecular weight Mi in the solution.  The number average 
molecular weight of the polymer is simply

• The concentration in grams/cm3 of the polymer in the solution is just

• The “reduced osmotic pressure” when plotted as a function of the solute (i.e. 
polymer) concentration will give a straight line with:
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Hence the osmotic pressure can be 
written
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Osmometry cont’d

• At the θ condition, 2nd term disappears (recall χ = 1/2) and solution is 
ideal

• The slope of the reduced osmotic pressure yields a measure of the  
polymer segment-solvent F-H interaction parameter, 
ie we have a way to experimentally determine χ.

• For gases, the pressure is often developed as a function of   
concentration

• We can therefore identify the virial coefficients A1 and A2 as:
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Comments about Osmometry
1. We assumed mean field conditions - local environment is similar 

everywhere.
2. We employed a dilute solution approximation with φ2<<1 .

The requirements force the experimental conditions to be chosen such that:

(1) System is “thermodynamically concentrated” c2 > c2*

(2) System is “mathematically dilute” φ2 << 1

c2* is the so called overlap concentration; the polymer concentration at 
which the coils just begin to touch and hence the solution is reasonably 
uniform in composition (i.e. mean field situation, no large regions of pure solvent)

c2* ≡ concentration at overlap ≅ 32/12
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Schematic Polymer-Solvent Structure at Various c2
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SEC/GPC (Size Exclusion Chromatography)/(Gel Permeation Chromatography)

• SEC allows measurement of the entire molar mass distribution enabling all molecular 
weight averages to be computed for comparison with other techniques.  Preparative 
GPC uses 25-50 mg of a polymer per run and allows one to fractionate polydisperse 
samples.

• Apparatus:  Set of columns (2-6) containing solvent swollen crosslinked PS beads.  The 
beads are selected to have pore sizes in the range of 102 –105Å.  A run consists of 
injecting 0.05 ml of a dilute solution (requires only ~0.1 mg of polymer !), then 
allowing the solution to transverse the columns and monitoring the eluting polymer 
molecules using various detectors.  In order to “see” the molecules, one needs sufficient 
“contrast” between the solvent and solute (polymer).  Three types of detectors are 
commonly used:

– Ultra violet absorption : UV Detector
– Infrared absorption : IR   Detector
– Refractive index changes : RI  Detector

• The solvent is chosen to be a good solvent for the polymer, to have a different refractive 
index from the polymer and to not have light absorption in the range for which the 
polymer is absorptive. 



Schematic of SEC Separation Process
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Principles behind SEC involves…
• Competition between 2 types of entropy

1. ΔSmix favorable entropy of mixing of polymer and solvent inside pores.
2. ΔSconf unfavorable loss of conformation entropy of large size polymers (high MW) 

when entering smaller pores in the gel (column packed with swollen Xlinked PS 
beads).

• The interplay of both types of entropies results in substantially different residence
times in the column for the different polymer molar masses.

1. Mixing entropy gain drives smaller chains to enter and diffuse throughout entire gel
2. Intermediate size chains access a portion (the larger pores) of the pore volume in the 

gel
3. Conformational entropy loss prevents larger chains from entering the gel

• GPC is not an absolute method so it is necessary to calibrate the MW vs. elution volume 
curve using known narrow fraction samples of the same polymer in the same solvent at the 
same temperature.  Normally researchers employ PS in THF at 23°C for PS-based 
calibration.  Thus samples are referred to as eg “60,000 g/mol on a PS-basis,” meaning that 
the particular sample exited the column at an elution volume corresponding to a 60,000 
g/mol PS sample going through the same column using THF at 23°C (a good solvent) as the 
carrier medium. 



A Simple GPC Chromatograph
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SEC cont’d
• The volume eluted Ve consists of 2 parts:

External to the Beads: “Void” Volume Vo  (outside volume)
Internal to the Beads:  Pore Volume Vi   (inside volume)

• Depending on the size of the molecule passing through the column all or only a 
portion of the total volume is visited/explored (called pore permeation) by the 
diffusing molecules.

pure solvent eluted volume Ves =  Vo + Vi 
polymer solution eluted volume Vep =  Vo + ViKse

• where Kse is the size exclusion equilibrium constant.

Kse = 1 for x1 = 1 solvent, i.e. no exclusion
Kse = f(x2) < 1 for x2 > x1  Kse → 0, ie total exclusion from pores for x2→∞

ΔGpp = Go – Gi change in Gibbs free energy for pore permeation by polymer

• Solvent and column material are chosen such ΔHpp of the polymer is = 0
Δ Gpp = -TΔSpp =  -RT ln Kse

ΔSpp is the change in entropy for pore permeation.  This depends mainly on the relative 
sizes of the polymer chain and the pore. solving

Kse (x2) ≡
polymer concentration inside bead
polymer concentration outside bead

=
c2i(x2)
c2o(x2)

Kse = eΔS/R



SEC cont’d
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Furthermore, we can approximate:

As depends on the pore/column and <r2>1/2 depends on solvent, T and the MW of that polymer
chain entering the pore

THF solvent

here Vep

Vep =  Vo + ViKse

is the elution volume of the polymer and As is the pore S/V ratio



Detector Sensitivity/Selectivity:  An Example

6 Column GPC (high resolution)

PDI >> 1.12!!

2 Column GPC
PDI = 1.12, apparently 

a nice sample…

[The Truth hurts!!]
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Scattering of Radiation: Dilute Polymer Solution

• , A2(χ) and <Rg
2> (Zimm plot)

• SALS (small angle light scattering)
SAXS (small angle X-ray scattering) 
SANS (small angle neutron scattering)
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Scattering Intensity from a Solution of 
Polymer Chains in Solvent

• Geometry of apparatus: sample detector 
distance r, scattering angle θ

• Optical constants and material properties: 
λ, n(or α), dn/dc2

• Thermodynamics of polymer-solvent 
system: c2, and A2(chi)wM



Basic Scattering Equation

Scattering arises from…
Light (Δα)2 polarizability fluctuations
X-ray (Δρ)2 electron density variations
Neutron (Δb)2 neutron scattering length variation
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Scattering I:  from Density Fluctuations
A dilute gas in vacuum
• Consider small particles: dp << λradiation

– (situation:~ point scatterers)

• Scattered Intensity at scattering angle θ to a detector r away 
from sample:

• For N particles in total volume V (assume dilute, so no coherent 
scattering)
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Fundamental relationship: 
index of refraction   polarizability
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Rayleigh and Molecular Weight of Gases
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