
Mean Field Flory Huggins Lattice Theory

• Mean field:  the interactions between molecules are assumed to be due to the 
interaction of a given molecule and an average field due to all the other 
molecules in the system.  To aid in modeling, the solution is imagined to be 
divided into a set of cells within which molecules or parts of molecules can be 
placed (lattice theory).

• The total volume, V, is divided into a lattice of No cells, each cell of volume v.  
The molecules occupy the sites randomly according to a probability based on 
their respective volume fractions.  To model a polymer chain, one occupies xi 
adjacent cells.

• Following the standard treatment for small molecules (x1 = x2 = 1) 

using Stirling’s approximation:

No =N1 + N2 = n1x1 +  n2x2

V =Nov

Ω1,2 =
N0!

N1!N2!

1MforMMlnMM !ln >>−=

ΔSm = k(−N1 lnφ1 −N2 lnφ2) φ1 = ?



Entropy Change on Mixing ΔSm
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The entropic contribution to ΔGm is thus seen to always 
favor mixing if the random mixing approximation is used.

Remember this is
for small molecules
x1 = x2 = 1

Note the symmetry



Enthalpy of Mixing ΔHm

• Assume lattice has z nearest-neighbor cells.

• To calculate the enthalpic interactions we consider 
the number of pairwise interactions.  The probability 
of finding adjacent cells filled by component i, and j is 
given by assuming the probability that a given cell is 
occupied by species i is equal to the volume fraction 
of that species:  φi.



ΔHm cont’d

υij =
υ12 = N1z φ2

υ11 = N1 zφ1 / 2

υ22 = N2 zφ2 / 2

H1,2 = υ12 ε12 + υ11ε11 + υ22 ε22
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χ Parameter
• Define χ: ( )⎥⎦
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χ represents the chemical interaction between the components
ΔHM

N0
= k T χ φ1 φ2

• ΔGM : ΔGM = ΔHM −T ΔSM

Note: ΔGM is symmetric in φ1 and φ2.

This is the Bragg-Williams result for the change 
in free energy for the mixing of binary metal alloys.
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Ned: add eqn for 
Computing Chi from 
Vseg (delta-delta)2/RT



ΔGM(T, φ, χ)
• Flory showed how to pack chains onto a lattice and correctly evaluate 

Ω1,2 for polymer-solvent and polymer-polymer systems.  Flory made a 
complex derivation but got a very simple and intuitive result, namely 
that   ΔSM is decreased by factor (1/x) due to connectivity of x
segments into a single molecule:

• Systems of Interest
- solvent – solvent x1 = 1    x2 = 1
- solvent – polymer x1 = 1 x2 = large
- polymer – polymer x1 = large, x2 = large
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Need to examine variation of ΔGM with T, χ, φi, 
and xi to determine phase behavior.

For polymers

Note possible huge 
asymmetry in x1, x2



Flory Huggins Theory
• Many Important Applications

1. Phase diagrams
2. Fractionation by molecular weight, fractionation by composition
3. Tm depression in a semicrystalline polymer by 2nd component
4. Swelling behavior of networks (when combined with the theory 

of rubber elasticity)
The two parts of free energy per site

• ΔHM can be measured for low molar mass liquids and estimated for 
nonpolar, noncrystalline polymers by the Hildebrand solubility 
approach.
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Solubility Parameter
• Liquids

ΔHν = molar enthalpy of vaporization

Hildebrand proposed that compatibility between 
components 1 and 2 arises as their solubility parameters 
approach one another    δ1→ δ2.

• δp for polymers
Take δP as equal to δ solvent for which there is:
(1) maximum in intrinsic viscosity for soluble polymers
(2) maximum in swelling of the polymer network

or (3) calculate an approximate value of δP by chemical group 
contributions for a particular monomeric repeat unit.
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Estimating the Heat of Mixing
Hildebrand equation:

Vm = average molar volume of solvent/monomers
δ1, δ2 =  solubility parameters of components

Inspection of solubility parameters can be used to estimate 
possible compatibility (miscibility) of solvent-polymer or 
polymer-polymer pairs.  This approach works well for 
non-polar solvents with non-polar amorphous polymers. 
Think:  usual phase behavior for a pair of polymers?
Note: this approach is not appropriate for systems with specific
interactions, for which ΔHM can be negative.

ΔHM = Vm φ1 φ2 δ1 − δ2( )2 ≥ 0



Influence of χ on Phase Behavior

ΔSm
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Assume kT = 1 and   x1 = x2

At what value of chi does the
system go biphasic?

Expect
symmetry

-T

What happens to entropy
for a pair of polymers?



Polymer-Solvent Solutions 
• Equilibrium:  Equal Chemical potentials:  so need partial 

molar quantities
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Construction of Phase Diagrams

• Chemical Potential

• Binodal - curve denoting the region of 2 distinct
coexisting phases μ1' = μ1" μ2' = μ2"
or equivalently μ1' – μ1
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Phases called prime
and double prime

Binodal curve is given by finding common tangent to ΔGm(φ) 
curve for each φ, T combination.  Note with lattice model (x1 = x2) (can use volume 

fraction of component in place of moles of component  



Construction of Phase Diagrams 
cont’d

• Spinodal (Inflection Points)

• Critical Point
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Dilute Polymer Solution
• # moles of solvent (n1) >> polymer (n2) and n1 >> n2x2

• For a dilute solution:

φ1 =
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Let’s do the math:



Dilute Polymer Solution cont’d
• Recall for an Ideal Solution the chemical potential is proportional to the 

activity which is equal to the mole fraction of the species, Xi

• Comparing to the expression we have for the dilute solution, we see 
the first term corresponds to that of an ideal solution.  The 2nd term is called 
the excess chemical potential

– This term has 2 parts due to 
• Contact interactions (solvent quality) χ φ2

2 RT
• Chain connectivity (excluded volume)    -(1/2) φ2

2 RT

• Notice that for the special case of χ = 1/2, the entire 2nd term disappears!
This implies that in this special situation, the dilute solution acts as an Ideal 
solution. 
The excluded volume effect is precisely compensated
by the solvent quality effect.

Previously we called this the θ condition, so χ = 1/2 is also the theta point
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F-H Phase Diagram at/near θ condition

• x1 = 1, x2 >> 1 and n1 >> n2x2
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Critical Composition &
Critical Interaction Parameter

x1 , x2General
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Symmetric
Polymer-
Polymer

x1 = 1; 
x2 = N

Solvent-
polymer

20.5x1 = x2 = 12 low molar 
mass liquids

χcφ1,cBinary System

x2
1+ x2

1
2

1+
1
x2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

2
N

x2
x1 + x2

1
2

1
x1

+
1
x2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2



Polymer Blends
Good References on Polymer Blends:
• O. Olasbisi, L.M. Robeson and M. Shaw, Polymer-Polymer 

Miscibility, Academic Press (1979).

• D.R. Paul, S. Newman, Polymer Blends, Vol I, II, Academic Press 
(1978).

• Upper Critical Solution Temperature (UCST) Behavior
Well accounted for by F-H theory with χ = a/T + b

• Lower Critical Solution Temperature (LCST) Behavior
FH theory cannot predict LCST behavior.  Experimentally find that 
blend systems displaying hydrogen bonding and/or large thermal 
expansion factor difference between the respective 
homopolymers often results in LCST formation.



x1 = x2 = N

Phase Diagram for UCST Polymer Blend

A polymer x1 segments v1 ≈ v2 & x1 ≈ x2
B polymer x2 segments
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2 Principal Types of Phase Diagrams

Konigsveld, Klentjens, Schoffeleers
Pure Appl. Chem. 39, 1 (1974)

Nishi, Wang, Kwei 
Macromolecules, 8, 227 (1995)

Figure by MIT OCW.
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Assignment - Reminder

• Problem set #1 is due in class on 
February 15th.
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