
Example V(φ):
Rotational conformations of n-butane 
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Conformers:  Rotational Isomeric State Model

• Rotational Potential V(φ) 
– Probability of rotation angle phi P(φ) ~ exp(-V(φ)/kT)

• Rotational Isomeric State (RIS) Model
– e.g.  Typical 3 state model : g-, t, g+ with weighted probabilities
– Again need to evaluate taking into account probability of a φ

rotation between adjacent bonds

• This results in a bond angle rotation factor of 

where

with P(φ) = exp(-V(φ)/kT)
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The so called  “Characteristic ratio”
and is compiled for various polymers



The Chemist’s Real Chain

• Preferred bond angles and rotation angles:
– θ, φ. Specific bond angle θ between mainchain atoms (e.g. C-C bonds) with rotation angle 

chosen to avoid short range intra-chain interferences. In general, this is called “steric hindrance”
and depends strongly on size/shape of set of pendant atoms to the main backbone (F, CH3, phenyl 
etc).

• Excluded volume:  self-crossing of chain is prohibited (unlike in diffusion or in the mathematician’s 
chain model):  Such excluded volume contacts tend to occur between more remote segments of the 
chain. The set of allowed conformations thus excludes those where the path crosses and this forces 
<rl,n

2 >1/2 to increase.

• Solvent quality:  competition between the interactions of chain segments (monomers) with 
each other vs. solvent-solvent interactions vs. the interaction between the chain segments 
with solvent.  Chain can expand or contract.

• monomer - monomer

• solvent - solvent                  εM-M vs. εS-S vs. εM-S
• monomer - solvent



Excluded Volume

• The excluded volume of a particle is that volume for which the 
center of mass of a 2nd particle is excluded from entering.

• Example:  interacting hard spheres of radius a
– volume of region denied to sphere A due to presence of 

sphere B
– V= 4/3π(2a)3 = 8 Vsphere

but the excluded volume is shared by 2 spheres so 
Vexcluded = 4 Vsphere



Solvent Quality and Chain Dimensions
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• Solvent quality: 
– M-M, S-S, M-S interactions:  εM-M, εS-S, εM-S



Physicist’s Universal Chain
• Recover random walk relation for real chain at theta 

condition (or in melt state!) by redefining a coarse grained 
model of N Kuhn steps
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,

N steps of length b,   
b = Kuhn step

with

Scaling law

Fewer, larger steps



Manipulating    

To increase end to end distance
• Excluded Volume (bigger, bulkier monomers)
• Large bond angle and strong steric interactions tend 

to favor all trans conformation     => C∞ large

To increase or decrease end to end distance
• Solvent quality
• Temperature (affects solvent quality and relative interaction energies)

• Deformation (stretch the coil: rubber elastic behavior)

r1n{ }



Characteristic Ratio
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Experimentally measure MW and hence chain dimensions 
(technique:  laser light scattering: Zimm plot)

in a theta solvent for high MW sample

Influence of steric interactions on 
characteristic ratio



Model

Mathematician’s Ideal RW

Chemist’s Real Chain

θ fixed , 

V(φ)-RIS

Real Chain θ, V(φ) – and solvent 
quality and excluded volume

Physicist’s Universal Chain
(α = 1 conditions)

<r2>

<r2> = nl2

<r2> = nl2C∞α2

<r2> = Nb2

where N = # of statistical segments,

b = statistical segment length, b = C∞l

Comments
Freely jointed chain, n bonds each of      

length 1. 

Allow preferred bond angles and preferred 
rotation angles about main chain bonds

Characteristic ratio takes into account all 
local steric interactions 

Factor α takes into account solvent quality 
and long range chain self-intersections 

(excluded volume)

����:  α = 1 for two states:                                

(i)  Theta condition - particular solvent and 
temperature       

(ii) Melt state

C∞ is incorporated into Kuhn length b.
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Summary: Flexible Coil Chain Dimensions



Thermodynamics of Polymer Solutions
• Bragg-Williams Lattice Theory for Phase Behavior of Binary Alloys

W. L. Bragg and E. J. Williams, Proc. Roy. Soc. A145, 699 (1934); ibid A151, 540 (1935).

• Generalize to polymer-polymer and polymer-solvent phase behavior.
P. J. Flory, J. Chem Phys. 10, 51 (1942), M. L. Huggins, J. Phys. Chem. 46, 151 (1942).

G = H − TS
Δ G = G1 ,2 − (G1 + G 2 ) MIX1 2 1,2

STATE 1 STATE 2

Binary Component System in State 2

solvent-solvent solvent-polymer polymer-polymer
Materials scientists already familiar with B-W Lattice Theory !

new
situations

Chapter 3, Young and Lovell

Figure by MIT OCW.

Binary Component System in State 2



Thermodynamics of Polymer Sol’n cont’d

• State 1 – 2 pure phases comprised of ni moles of component i
If component is a polymer, it has xi segments and each 
segment has volume vi

• State 2 – mixed phase, 
assume 

G= H −TS
ΔG = G1,2 − (G1 + G2 ) MIX1 2 1,2

STATE 1 STATE 2

V1 = n1x1v1   V2 = n2x2v2

V = n1x1v1 + n2 x2v2 ΔV1,2 =0

Note if system is comprised of a solvent and a polymer, the convention
is to name the solvent component 1 and the polymer component 2



Thermodynamics cont’d – Entropy

1. Translational - (sometimes called combinatorial or configurational) 
due to the number of distinguishable spatial arrangements 

2. Conformational - due to number of distinguishable shapes of a given 
molecule keeping center of mass fixed.  We will assume that there 
are no differences in molecular conformations in the unmixed vs.
mixed state.

3. Recall  
4. since there is only 1 way to arrange a pure 

component in its volume

• The increase in translational entropy is due to the increased total volume 
available to the molecules in the mixed state.  The statistical mechanics is 
standard for mixing of 2 gases:

S =k lnΩ ΔS= k ln Ω1,2 − k(ln Ω1 + lnΩ2)
Ω1 =1, Ω2 =1

ΔSm = k ln Ω1,2 − 0

ΔSm = k(n1 lnV / V1 + n2 lnV / V2 )



Mean Field Lattice Theory

• Mean field:  the interactions between molecules are assumed to be due to the interaction 
of a given molecule and an average field due to all the other molecules in the system.  
To aid in modeling, the solution is imagined to be divided into a set of cells within 
which molecules or parts of molecules can be placed (lattice theory).

• The total volume, V, is divided into a lattice of No cells, each cell of volume v.  The 
molecules occupy the sites randomly according to a probability based on their respective 
volume fractions.  To model a polymer chain, one occupies xi adjacent cells.

• Following the standard treatment for small molecules (x1 = x2 = 1) 

using Stirling’s approximation:

No =N1 + N2 = n1x1 +  n2x2

V =Nov

Ω1,2 =
N0!

N1!N2!

1MforMMlnMM !ln >>−=

ΔSm = k(−N1 lnφ1 −N2 lnφ2)

φ1 = ?



Entropy Change on Mixing ΔSm is :

ΔSm
No

= + k(−φ1 ln φ1 −φ2 ln φ2)
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The entropic contribution to ΔGm is thus seen to always 
favor mixing if the random mixing approximation is used.

Remember this is
for small molecules
x1 = x2 = 1

Note the symmetry



Enthalpy of Mixing ΔHm

• Assume lattice has z nearest-neighbor cells.

• To calculate the enthalpic interactions we consider the 
number of pairwise interactions.  The probability of 
finding adjacent cells filled by component i, and j is given 
by assuming the probability that a given cell is occupied by 
species i is equal to the volume fraction of that species:  φi.



ΔHm cont’d

υij =
υ12 = N1z φ2

υ11 = N1 zφ1 / 2

υ22 = N2 zφ2 / 2

H1,2 = υ12 ε12 + υ11ε11 + υ22 ε22

H1,2 = z N1φ2 ε12 +
z
2
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z
2
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recall

Some math Note the symmetry



χ Parameter
• Define χ: ( )⎥⎦

⎤
⎢⎣
⎡ +−= 221112 2

1 εεεχ
kT
z

χ represents the chemical interaction between the components
ΔHM

N0
= k T χ φ1 φ2

• ΔGM : ΔGM = ΔHM −T ΔSM

Note: ΔGM is symmetric in φ1 and φ2.

This is the Bragg-Williams result for the change 
in free energy for the mixing of binary metal alloys.
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ΔGM(T, φ, χ)
• Flory showed how to pack chains onto a lattice and correctly evaluate Ω1,2 for 

polymer-solvent and polymer-polymer systems.  Flory made a complex 
derivation but got a very simple and intuitive result, namely that ΔSM is 
decreased by factor (1/x) due to connectivity of x segments into a single 
molecule:

• Systems of Interest
- solvent – solvent x1 = x2 = 1
- solvent – polymer x1 = 1 x2 = large
- polymer – polymer x1 = large, x2 = large
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Need to examine variation of ΔGM with T, χ, φi, 
and xi to determine phase behavior.

For polymers

Note possible huge 
asymmetry in x1, x2
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