Lecture 6, Wood notes, 3.054

Honeycomb-like materials in nature: wood

e “Materials” derives from Latin “materies, materia”, means wood or trunk of a tree

e Old Irish - names of first letters of the alphabet refer to woods

A alem = elm
B beith = birch
C coll = hazel
D dair = oak

Wood - structure

Orthotropic (if neglect curvature of growth rings)

p*/ps ranges from 0.05 (balsa) to 0.80 (lignum vitae)

Trees have cambial layer, beneath bark

Cell division at cambial layer:
o New cells on outer part of cambial layer — bark

o New cells on inner part of cambial layer — wood
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Living plant cells — plasma membrane and protoplast

Living cells secrete plant cell wall — analogous to extra cellular matrix in animal tissues

In trees, cells lay down cell wall over a few weeks, then die

Always retain a cambial layer of cells

Cellular structure: softwoods

e Tracheids
o Bulk of cells (90%), provide structural support
o Have holes in cell wall for fluid transport (pits)
o ~ 2.5-7.0 mm long; 20-80um across; t = 2-7um
e Rays

o Radial arrays of smaller parenchyma cells that store sugars

Cellular structure: hardwoods

e Fibers provide structural support; 35-70% of cells
e Vessels — sap channels — conduction of fluids; 6-55% of cells

e Rays — store sugars; 10-30% of cells
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Structure: cell wall

Fiber-reinforced composite

e Between two cells: middle lamella

Cell wall properties

e Similar in different species of wood

1500 kg/m”

35 GPa
10 GPa
350 MPa
135 MPa

Cellulose fibers in matrix of lignin / hemicellulose

Four layers, each with fibers at different orientation

(Note cellulose: FE ~ 140 GPa

oy~ 750 MPa)
A = axial direction

T = transverse direction
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Stress-strain curves

e 0 — e curves resemble those for honeycombs
e Mechanisms of deformation most easily identified on low density balsa

e Curves and images for balsa

Tangential loading: formation of plastic hinges in bent cell walls

Radial loading:
o Rays act as reinforcing
o Plastic yielding in cell walls

o Starts at platens and moves inwards

Axial loading;:
o Axial deformation of cell walls
o Then break end caps
o Serration corresponds to each layer of end caps breaking

o Failure by plastic buckling, formation of kink bands also observed

Denser species:
o Douglas fir — tangential, radial compression

o Norway spruce — axial compression



Stress strain curves
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Balsa

Figure removed due to copyright restrictions. See Figure 3: Easterling, K. E., R. Harrysson, et al. "On the
Mechanics of Balsa and Other Woods." Proceedings The Royal of Society. A 383, no. 1784 (1982): 31-41.
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Balsa: Tangential

Figure removed due to copyright restrictions. See Figure 4: Easterling, K. E., R. Harrysson, et al. "On the
Mechanics of Balsa and Other Woods." Proceedings The Royal of Society. A 383, no. 1784 (1982): 31-41.
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Figure removed due to copyright restrictions. See Figure 7: Easterling, K. E., R. Harrysson, et al. "On the
Mechanics of Balsa and Other Woods." Proceedings The Royal of Society. A 383, no. 1784 (1982): 31-41.
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Balsa: Radial

Figure removed due to copyright restrictions. See Figure 5: Easterling, K. E., R. Harrysson, et al. "On the
Mechanics of Balsa and Other Woods." Proceedings The Royal of Society. A 383, no. 1784 (1982): 31-41.
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Balsa: Axial

Figure removed due to copyright restrictions. See Figure 6: Easterling, K. E., R. Harrysson, et al. "On the
Mechanics of Balsa and Other Woods." Proceedings The Royal of Society. A 383, no. 1784 (1982): 31-41.
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Douglas Fir: Tangential Comp

Figure removed due to copyright restrictions. See Bodig, J., and B. A. Jayne.
Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, 1982.
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Douglas fir: Radial comp.

Figure removed due to copyright restrictions. See Bodig, J., and B. A. Jayne.
Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, 1982.
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Norway spruce: Axial comp

Images removed due to copyright restrictions. See Figure 5.14: Dinwoodie,
J. M. Timber: Its Nature and Behaviour. Van Nostrand Reinhold, 1981.
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Data for wood

E*/Es o< p*/ps (axial)

E*/E, < (p*/ps)® tangential; radial somewhat stiffer)

o foys o< (p*/ps) (axial)

o*/oys o< (p*/ps)? (tangential/radial)

Vi~ 0.5-0.8 Vi 4 ~ 0.02-0.07 Vg ~ 0.25-0.5
Vi ~ 0.2-0.6 Vi, ~ 0.01-0.04 Vi ~ 0.35-0.5

Modeling wood properties

Very simplified model — first order

Does not attempt to capture finer details (eg., softwoods vs. hardwoods)

Cell wall has been modeled as fiber composite; it is itself anisotropic

e We normalize all properties with respect to Es, 0,5 azial

Constant of proportionality also reflects cell wall anisotropy
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Model for wood microstructure

Figure removed due to copyright restrictions. See Figure 2: Easterling, K. E., R. Harrysson, et al. "On the
Mechanics of Balsa and Other Woods." Proceedings The Royal of Society. A 383, no. 1784 (1982): 31-41.
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Linear elastic moduli

e Tangential loading — model as honeycomb — cell wall bending
E;/Es ~ (p*/ps)®
o rays, end caps end to stiffen wood — data lie slightly above (p*/ps)?
e Radial loading — rays act as reinforcing plates and are higher density than fibers
Vr = volume fraction of rays By =Vr RPE: + (1 —Vg)Es ~ 1.5E%
R = (0"/ps)rays/ (P ps)fibers = 1.1 t0 2 E%  slightly larger than Ei;  ~ (p*/ps)®

e Axial loading

o Axial deformation in cell walls
B/ Es ~ (p*/ps)
e Explains, to first order:

o Density dependence

o Anisotropy
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Modeling Poisson’s Ratios

Model
Vpr = 0.5-0.8 1 constraining effect
vrp = 0.2-0.6 1 of rays and end caps

Vi, = 0.02-007 0
vi, =001-0.04 0

Vip = 0.25-0.5 vs  data close to 0.4~ v
vyr = 0.35-0.5 Vs

Modeling - compressive strength

e Tangential loading — bending, plastic hinges o}/0,s o (p*/ps)*

e Radial loading:
o oh=Vp R2os+ (1—Vg)ok
o balsa: Vp ~ 0.14 R~ 2 op = 1l.4o7}
o Higher density woods — R smaller
o o slightly larger than o%; both oc (p*/ps)?

e Axial loading
o Initial failure by axial yield (then end cap fracture, or buckling)

© 02/‘7@/5 X p*/Ps
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Modeling: cell wall plus cellular structure

e Cell wall can be modeled as a fiber composite
o Celloluse E ~ 140 GPa;
o Ligning/hemicellulose E ~ 2 GPa
o Composite upper and lower bounds give envelope at right of figure

o Measured values for Fg axia = 35 GPa; Eg ransverse — 10 GPa

e Can also show cellular solids model on some plot

e Overall, plot shows how wood hierarchical structure, density variation give wood moduli that vary
by a factor of 1000

e Can make similar plot for strength
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Wood: Honeycomb Models
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Wood: Honeycomb Models

Diagram removed due to copyright restrictions. See Figure 5b: Gibson, L. J. "The Hierarchical Structure
and Mechanics of Plant Materials." Journal of the Royal Society Interface 9 (2012): 2749-66.
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Material selection

e For a beam of a given stiffness, p/d, length, [, square cross-section with edge length, ¢, what material
minimizes the mass, m, of the beam?

m = pt?l
o )

5 CE
Py BB 712
m=r|(5)cm) !

to minimize mass, choose material with minimum p/E'? or maximize E/2/p

J

e Material selection chart: plot log E' vs log p

e Line of constant £'/2?/p shown in red on plot

o Materials with largest values of E/2/p at upper left of the plot
e Woods have similar values of E'/2/p as engineering composites

e Note that tree trunks, branches, loaded primarily in bending

E’* 1/2 Esl/2 < 1/2
e Also note, from models, ( 1 =  pst
P Ps P

— performance index for wood higher than that for the solid cell wall

e Similarly for strength in bending
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Wood in Bending: 6#3/p
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Wood Use in Design

Historical example: seventeenth century wooden ships

e (Colonial times, importance of navies to colonial powers

Used particular species for different parts of ship, based on their properties
e Oak — used for much of the hull, ribs, knees, planking — dense wood; stiff and strong
o “Straight oak” — straight pieces, cut from trunk

o “Compass oak” — carved pieced from trunk and branch, so that grain runs along carved, cut
piece — maximum FE, ¢*; used for knees, wing transom — curved pieces of ship hull

Eastern white pine
o British Royal Navy used for masts, imported from New England
o England had run out of tall straight trees for masts
o Strategic resource — ship speed, size — depended on size of mast and sail area

o Eastern white pine known fro straight, tall trunks; some over 100 feet tall

Lignum vitae
o Densest wood; acts as own lubricant

Used in block and tackle

O

o

Also used in clock gears

@)

John Harrison’s chronometer — Story of Longitude, Dava Sobel

o

H4 1759 lost 5 seconds in 81 days at sea
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Figure removed due to copyright restrictions. See The international
book of wood. Bramwell, M, ed. Artists House, 1982. pp 186-87.
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Modern example: glue-laminated timber

e Glue long pieces of wood, typically 1-2” thick, together

e Select strips to avoid defects (e.g., knots)

e Glue-lam has better mechanical properties than sawn lumber

e Also, can make curved members by using curved molds and clamps during bonding process
o Grain runs along the curve
o Architecturally attractive

o Exploits high stiffness and strength of wood along the grain
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Image of graceful glued-laminated timber arch bridge removed due to copyright
restrictions. See Figure 13: Engineered Wood Products: A Guide for Specifiers,
Designers and Users. Smulski, S., ed. PFS Research Foundation, 1997.

Engineered Wood Products: A Guide for Specifiers, Designers and Users,
S. Smulski Ed. PFS Research Foundation, 1997
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