Plant Stems with
Radial Density Gradients

1 v

Coconut Palm
http://en.wikipedia.org/wiki/
Image:Palmtree_Curacao.jpg



http://en.wikipedia.org/wiki/

Palm: Density Gradient
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Palm Stem: Density Gradient
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Rich, PM (1987) Bot.Gazette 148, 42-50.



Palm Stem:
Density at Breast Height
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A single mature palm has a similar range of
density as nearly all species of wood combined

Rich, PM (1987) Bot.Gazette 148, 42-50.



Palm Stem: Density Gradient
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Palm Properties

Prismatic cells in palm deform axially (like
wood loaded along the grain)

If E, was constant, would expect: E =E, (,0* / ,OS)

But measure: E'=C(p"/pu)

Similarly with strength



Palm Properties

« E,=0.1-3.0 GPa in low density palm tissue
from Washingtonia robusta (Rueggeberg et
al., 2008)

- Estimate in dense tissue (E" = 30 GPa; p'=
1000 kg/m3) E, = 45 GPa

« Large variation in E_ due to additional
secondary layers in cell walls of denser tissue
and increased alignment of cellulose
microfibrils in those layers



Palm: Mechanical Efficiency
Bending Stiffness
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Palm: Mechanical Efficiency
Bending Stress Distribution
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Palm: Mechanical Efficiency
Bending Strength Distribution
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Palm bending stress, strength
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Figure sources

Sources for all figures in:
Cellular Materials in Nature and Medicine (2010)



Circular sections with radial density gradients: Palm Stems

e Palms can grow up to 20-40m - largest stresses from hurricane winds

e Unlike trees, palms do not have a cambium layer at the periphery, with dividing cells to allow increase
in diameter as palm grows in height

e Instead, diameter of palm roughly constant as it grows in height
e Increasing stress resisted by cell walls increasing in thickness
e Add additional layers of secondary cell wall
e Produces radial density gradient
— Density higher at periphery and at base of stem

— A single stem can have densities from 100-1000 kg/m?, nearly spanning the density range of all
woods (balsa ~200 kg/m? — lignum vitae ~ 1300 kg/m?)

e Specimen of palm taken from different radial positions tested in bending (Paul Rich, 1980s)
e Found E* _ C/ IO* 2.46

axial —

e Might expect E; .., o< p - vascular bundles honeycomb-like



But additional cell wall layers change E,: data E,=0.1-3 GPa

Also: lower density palm has more ground tissue (parenchyma) with Ex p if at high turgor, but
Eox p? if at low turgor. (bending specimens dry)

Modulus of rupture o* = C” p***
Radial density gradient increases flexual rigidity

Compare (EI) with density gradient to (EI) of section of same mass+radius but uniform density
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Stress and Strength distribution
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Figure: if max normal stress at r = ry is ¢ = ¢* then bending stress distribution closely follows strength
distribution!
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