Lecture 9, Thermal Notes, 3.054

Thermal Properties of Foams

e Closed cell foams widely used for thermal insulation

e Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum
insulation panels

e Low thermal conductivity of foam arises from:

o low volume fraction of solid

o high volume fraction of gas with low A

o small cell size suppresses convection and radiation (through repeated absorption and reflection)
e Applications: buildings, refrigerated vehicles, LNE tankers

e Foams also have good thermal shock resistance since coefficient of thermal expansion of foam equals
to that of the solid; plus the modulus is much lower (e = AT 0 = EaAT = oy)
= used as heat shields

e Ceramic foams used as firebrick — ceramic has high T
— foam - low A - low heat loss
— low heat capacity - lowers energy to heat furnace to temperature
— good thermal shock resistance



Thermal conductivity, A

e Steady state conduction (T constant with time)

Fourier Law: ¢ =— AVT q = hect flux [J/(m?/s)]
D g=— ) ar A = thermal conductivity [W/mK]
dx VT = temperature gradient

_ T or L oT
o oy T Yoz

0

e Non-steady heat conduction (7" varies with time ¢)

or 0*T

—a p = density
o 2 : .
or Ox \ C), = specific heat - heat required to
a = thermal diffusivity = SC raise the temperature of unit mass by 1°K
[m?/s] ! p C, = volumetric heat capacity [J/m*K]

e Values for A\, a Table 7.1



Table7.1  Thermal conductivities and diffusivities

Material Thermal Thermal
conductivity diffusivity
MW/mK) a (m?/s)

Copper (solid) 3844 88 % 10752

Aluminium (solid) 230° 89x 10 %* Data fO r th erma I
Alumina (solid) 25.6° 8.2 x 10702 . .

Glass (solid) (12 45x107% COnd UCt|V|ty and
Polyethylene (solid) 0.35% 1.7x10 7% . . .
Polyurethane (solid) 0.25¢ th e rl I l a I d Iffu S IV I ty
Polystyrene (solid) 0.15* 1.0x1077#

Air 0.025% -

Carbon dioxide 0.016* -

Trichlorofluoromethane (CCl; F) 0.008* -

Oak (p"/p, = 0.40) 0.150? -

White pine (p"/ps = 0.34) 0.112* -

Balsa (p"/p; = 0.09) 0.055* -

Cork (p*/p, = 0.14) 0.045° -

Polystyrene foam (p*/p, = 0.025) 0.040° 1.1 x 107"

Polyurethane foam (p*/p, = 0.02) 0.025° 9.0 x 1077°

Polystyrene foam (o' /p, = 0.029-0.057) 0.029 0.035°

Polyisocyanurate foam, (CFC-11) (p' = 32 kg/m®) 0.020¢
Phenolic foam, (CEC-11, CFC-113) (p* = 48kg/m®)  0.017¢

Glass foam (p*/p, = 0.05) 0.050¢
Glass wool (p*/ps = 0.01) 0.042¢
Mineral fibre (p”/p, = 4.8-32 kg/m?) 0.046¢

All values for room temperature.
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Thermal diffusivity, a

e Materials with a high value of a rapidly adjust their temperature to that of surroundings, because
they conduct hear rapidly in comparison to their volumetric heat capacity; do not require much
energy to reach thermal equilibrium
eg. Cu a=112 x 10°° m?/s

nylon a = 0.09 x 107% m?/s
wood a = 0.082 x 107% m?/s

Thermal conductivity of a foam, \*.

A* — contributions from — conduction through solid, A\?
— conduction through gas, A}
— convection within cells, A}

— radiation through cell walls and across voids, A}
A=A+ A AN

e Conduction through solid: A = nAs(p*/ps) n = efficiency factor ~ 2/3
e Conduction through gas: \; = Aj(1 — p*/p;)



For example, 2.5% dense closed-cell polystyrene foam:
A" =0.040 W/mK; A7 = 0.15 W/mK; A\; = 0.025 W/mK (air)

As + A, =2/3(0.15)(0.025) + (0.025)(0.975)
=0.003 4 0.024
=0.027 W/mK
e Most of conductivity comes from conduction through gas
e Foams for isolation blown with low )\, gases

e Problem with aging — low A, gases diffuse out of foam over time, air diffuses in; A\; 1

Convection within the cell

het
. e Gas rises and falls due to density changes with temperature
e Density changes — buoyancy forces
' e Also have viscous forces from drag of gas as it moves past cell wall
Con |

Convection is important when Rayleigh number > 1000

= density of gas AT, = temp. diff. across the
3 P
R — pgB ATl g = grav. acceleration cell
‘ pHa £ = volume expansion [ = cell size

for a gas = 1/T (isobaric) p = dynamic viscosity of gas
a = thermal diffusion



Convection

For R, = 1000 air p = Datm T = room temp B=1/T=1/300(°K1).
AT, =1°K  par =2x 107°Pas  pur = 1.2 kg/m’
air = 2.0 x 107°m?/s

= [ =20 mm

e Convection important if cell size > 20 mm

e Most foams: cell size < 1 mm = convection negligible

Radiation

e Hect flux passing by radiation, ¢¥, from surface at temperature 77, to one at a lower temperature 7Ty,
with a vacuum between them, is:

@ = po(Td—T7) Stefan’s law
o = Stefan’s constant = 5.67 x 1078 W/m? K*
p1 = constant (< 1) describing emissivity of the surfaces

(emitted radiant flux per unit area of sample relative to black body radiator at same temperature
and conditions; black body absorbs all energy; black body emissivity =1)



Radiation

e If put foam between two surfaces, heat flux is reduced, since radiation is absorbed by the solid and
reflected by cell walls

Attenuation g, = ¢¥ exp (—K*t*) Beer’s law
K* = extinction coefficient for foam
t* = thickness of foam

For optically thin walls and struts (¢ < 10um) (transparent to radiation)

K" = (P*/,Os) K

Heat flux by radiation then:
dT

*

r:)\
q " dr

¢ = Pro(Tf = T) exp[—(p*/p) Kot = X; ——

Obtain A, using some approximations



Approximations:

dr T\ —Ty, AT
dx t* t*
TH T~ dAATT?  T= (T1;T0>
@ = Brod AT TP exp [—(p" /ps) Ko t*] = \F %
Ar = 4B10T? t* exp [—(p"/ ps) K 1]
as p'/ps L AT

Thermal conductivity

e Relative contributions of A, A7, Al shown in Fig. 7.1
o largest contribution Ay
e \* plotted against relative density Fig. 7.2
o minimum between p*/ps of 0.03 and 0.07
o at which point A* only slightly larger than A?
o at low p*/ps, \* increases - increasing transparency to radiation (also, walls may rupture)

o tradeoff: as p*/ps goes down, A% goes down, but A* goes up
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Cond. Vs. Relative Density
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Cond. vs. Cell Size
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A* plotted against cell size Fig. 7.3
e \" increases with cell size
e Radiation reflected less often
Note: aerogels
e Pore size < 100nm

e Mean free path of air at ambient pressure = 68 nm
— average distance molecules move before collision with another molecule

e Aerogels — pore size < mean free path of air — reduced conduction through gas

Specific hear C,
e Specific heat — energy required to raise temperature of unit mass by unit temperature

Cr = Cps [J/kg- K]

p

Thermal expansion coefficient

af =y (consider foam as framework)

(but if closed-cell foam cooled dramatically — gas can freeze, collapsing the cells; or if heated — gas
expands, increasing the internal pressure and strains)
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Thermal shock resistance
e If material subjected to sudden change in surface temperature - induces thermal stresses at surface,
plus cracking and spalling
e Consider material at T dropped intp water at Ty (17 > T5)
o Surface temperature drops to 75, contracting surface layers
o Thermal strain er = a AT

e If surface bonded to underlying block of material - constrained to original dimensions

E aAT
1-V

in the surface

o =

e Cracking/spalling when o = oy

1—v

AT = oy = critical AT to just cause cracking

«

e For foam: (open cells)

* 3/2(1 _ 4% _
AT — 0.2 og(p /,fs) 2(1 V") _ 02 _ o(1 —v) _ 02 AT,
Es (p*/ps)*as (p*/ps)'? Esa (p*/ps)*

o As foam density goes down, AT} goes up firebrick - porous ceramic
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Case study: optimization of foam density for thermal insulation

e There is an optimal foam density for a given thermal insulation problem

Already saw A\* has a minimum as a f(p*/ps)

Typically, have a constraint on the foam thickness, t*, t* =constant

2 * * * T3 4% * *
= 30/ p)As + (1= p"[p)Ag + 410 Tt exp[—K,(p"/ ps)t']

What is optimum p*/p, for a given ¢*?

A*

N’ 1 AK,BroT3 7
d(p*/ps) W/ Ps)en = 32 5A = Ay

As given thickness t* increases, (p*/ps)opt decreases

As T increases, (p*/ps)opt inCreases

e.g. coffee cup t*=3mm (p*/ps)opt = 0.08
refrigerator ¢* = 50mm (p*/ps)opt = 0.02

(see PP slide Table 7.3 for data used in calculations)
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Case Study:
Optimization of Relative Density
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Case Study:
Optimum Relative Density

Table 7.3 Data for optimization case study

Extinction coefficient of solid polymer, K 5.67 x 10 m™!
Emissivity factor, /3, 0.5

Conductivity of solid polymer, A, 0.22W/mK
Conductivity of gas, A, 0.02W/mK

Mean temperature, 7 300°K

Stefan’s constant, o 5.67 x 10°* W/m?K*

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Table courtesy of Lorna Gibson and Cambridge University Press.
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Case study: insulation for refrigerators

e Insulation reduces energy cost, but has a cost itself

e Total cost is the cost of insulation plus the cost of energy lost by hear transfer through walls

e Objective function: minimize total cost

e given: r=thickness of insulation Cyr=cost of insulation/mass
AT=temp. diff. across insulation C'p=cost of energy / joule
t;=design life of refrigerator Cr=total cost/area
AT AT ]
Cr=xpCy+X—t,Cg (heat flux ¢ = \— —)
x T m°s
1 1
Define: M, = My = —
enne 1 p*CM 2 h\
Cr 1 AT 1
= tCp | —
i M1 + 22 B M2
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The terms are equal when:

AT
My= |—1 CE] My
x
coupling constant
Family of parallel straight lines of constant value % t1 Cgp

Fig. 13.11 AT = 20° x = 10mm Cp=0.01/pd

Two lines for to = 10 years and ¢; = 1 month

(note error in book ¢; = 10 years line should be moved over)
Also plotted a set of curved contours - plots of Cr/x:

o As move up and to the right of plot, the value of Cr/x decreases

For t; =10 years = phenolic foam p* = 0.035 Mg/m?
For ¢, =1 month = EPS p* = 0.02 Mg/m?
PP p* = 0.02 Mg/m?3

18



Case Study:
Insulation for Refrigerators

o 1007 i ! MIRIMALIN
(T e T T ) {{Cost contaurs oy LIFE COET
- INSULATION - 10 yearife pi /
o) s sTEEL g y - "-i— S
B N E U’
ot .'., o 1 v 5 - ﬁ‘. h
- N = P |
el =——"a" > e T
- = | : — —
. - g\:? G mj o !
L e S -

ter E 5 sraoy = Cgnsl conbours
0 S 1manth life
g - & "
.. E I e
N ] - —
s § é llll@i‘h" / | Insulation for

3 :
g 3 =  |[Designwe UNA on b HEfI’I EFETDFE

5 i ot :F';ﬁg.-;h'"" G

JAN AN 001 o1 10 *mcl

1/Cost per unit \rul M1 (1043 m*3/%)

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

19



MIT OpenCourseWare
http://ocw.mit.edu

3.054 / 3.36 Cellular Solids: Structure, Properties and Applications
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



