
Lecture 4 Honeycombs Notes, 3.054
 

Honeycombs-In-plane behavior 

• Prismatic cells

• Polymer, metal, ceramic honeycombs widely available

• Used for sandwich structure cores, energy absorption, carriers for catalysts

• Some natural materials (e.g. wood, cork) can be idealized as honeycombs

• Mechanisms of deformation and failure in hexagonal honeycombs parallel those in foams

◦ simpler geometry — unit cell — easier to analyze

• Mechanisms of deformation in triangular honeycombs parallel those in 3D trusses (lattice materials)

Stress-strain curves and Deformation behavior: In-Plane 

Compression 

• 3 regimes – linear elastic − bending
– stress plateau − buckling

− yielding
 
− brittle crushing
 

– densification − cell walls touch

• Increasing t/l ⇒ E∗ ↑ σ∗ ↑ ED ↓
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Honeycomb Geometry 

           

          

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge  
University Press, ��1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge 
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Deformation 
mechanisms 

Bending 
X2 Loading 

Buckling 

Bending 
X1 Loading 

Bending 
Shear  
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge 
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



           Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge 
          University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Plastic collapse in an 
aluminum honeycomb 
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Stress-Strain Curve 
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University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



Tension 

• Linear elastic −	 bending

• Stress plateau − exists only if cell walls yield
− no buckling in tension 
− brittle honeycombs fracture in tension 

Variables affecting honeycomb properties � � 

ρ∗
t 
l (hl + 2) 2 t • Relative density

ρs
= 

2 cos θ (hl sin θ) 
= √ 

3 l 
regular hexagons 

• Solid cell wall properties: ρs, Es, σys, σfs

• Cell geometry: h/l, θ



In-plane properties 

Assumptions: 

• t/l small ((ρ∗/ρs) small) — neglect axial and shear contribution to deformationc 

• Deformations small — neglect changes in geometry

• Cell wall — linear elastic, isotropic

Symmetry 

• Honeycombs are orthotropic — rotate 180◦ about each of three mutually perpendicular axes and
structure is the same

Linear elastic deformation ⎡⎤⎡ ⎤⎡
 ⎤
 

⎢⎢ 
⎥⎥ 

E1 1/E1 −ν21/E2 −ν31/E2 0 0 0 σ1
− ⎢− 

⎢⎢⎢ 
⎥⎥⎢⎢

⎥
 ⎢⎥ ⎥⎥⎥−ν32/E3E2 ν12/E1 1/E2 0 0 0
 σ2 ⎢⎢⎢⎢
 

−ν23/E2 −1/E3E3 ν13/E1 0 0 0
 σ3⎥⎥⎥ ⎥⎢
 ⎥⎥⎥⎦=
 ⎢⎢⎣ 0 0 0 1/G23 0 0 
0 0 0 0 1/G13 0 

⎢⎢⎣ 
⎥⎥⎦E
 σ4 

σ5 

4 ⎣
 ⎦E
5 

E6 0 0 0 0 0 1/G12 σ6
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• Matrix notation: E1 = E11
E2 = E22
E3 = E33

E4 = γ23
E5 = γ13
E6 = γ12

σ1 = σ11
σ2 = σ22
σ3 = σ33

σ4 = σ23
σ5 = σ13
σ6 = σ12

• In-plane (x1 − x2): 4 independent elastic constants:
E1 E2 ν12 G12

−ν12 −ν21
and compliance matrix symmetric = (reciprocal relation) 

E1 E2

notation for Poisson’s ratio: νij = 
−Ej
Ei

Young’s modulus in x1 direction 

Unit cell in x1 direction: 2l cos θ 
Unit cell in x2 direction: h + 2l sin θ 

P
 
(n + l sin θ) b
 

σ1 = 

δ sin θ 
E1 = 

l cos θ 
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In-Plane Deformation:  
Linear Elasticity 

Figure removed due to copyright restrictions. See Figure 5: L. J. Gibson, 

M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."
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http://rspa.royalsocietypublishing.org/content/382/1782/25.abstract


  

M diagram: 2 cantilevers of length l/2 

P sin θ(l/2)3
δ = 2 · 

3Es I 
2 P l3 sin θ 

= 
24 Es I 

δ = 
P l3 sin θ 
12 Es I 

I = 
b t3

12 

Combining: E ∗ 
1 = 

σ1
E1

= 
P 

(h + l sin θ) b 
l cos θ 
δ sin θ 

= 
P 

(h + l sin θ) b 
l cos θ 

P l3 sin2 θ 
12 Es

b t3

12 

E ∗ 
1 = Es

t 
l

3 cos θ 

(h/l + sin θ) sin2 θ 
= 

4 √ 
3

t 3

l
Es

regular 
hexagons 
h/l=1 θ = 30◦

↑ ↑ ↑ 
solid relative 

property density 
cell geometry 
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Poisson’s ratio for loading in x1 direction 

E∗ = − 2ν12 E1

δ sin θ δ cos θ 
E1 = E2 = (lengthens)

l cos θ h + l sin θl 
δ cos θ l cos θ cos2 θ∗ = =ν12 h + l sin θ δ sin θ (h/l + sin θ) sin θ 

• ν∗ , t/l12 depends ONLY on cell geometry (h/l, θ), not on Es

∗• Regular hexagonal cells: ν12 = 1 

• ν can be negative for θ < 0

∗ 3/4 e.g. h/l=2 θ = −30◦ ν = = −112 (3/2)(−1/2)
 

∗
E∗ G∗
2 ν12 12 

• Can be found in similar way; results in book

12

(



Compressive strength (plateau stress) 

• Cell collapse by:

(1) elastic buckling	 (2) plastic yielding (3) brittle crushing 

• localization of yield • peaks and valleys corre­• buckling of vertical struts •	 as deformation progresses, spond to fracture of indi­throughout honeycomb
propagation of failure band vidual cell walls 

∗Plateau stress: elastic buckling, σel
• Elastomeric honeycombs — cell collapse by elastic buckling of walls of length h when loaded in x2
direction

• No buckling for σ1; bending of inclined walls goes to densification

n=end constraint factor 
Euler buckling load 

pin-pin fixed-fixed 
n2 π2 EsI n=1 n=2Pcr = 

h2
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Elastic Buckling 

Figure removed due to copyright restrictions. See Figure 7: L. J. Gibson, 
M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."
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http://rspa.royalsocietypublishing.org/content/382/1782/25.abstract


• Here, constraint n depends on stiffness of adjacent inclined members

• Can find elastic line analysis (see appendix if interested)

• Rotational stiffness at ends of column, h, matched to rotational stiffness of inclined members

• Find n/l=1 1.5 2 
n=0.686 0.760 0.860 

Pcr n2 π2 Es bt3
and (σel 

∗ )2 = = 
2l cos θ b h2 2l cos θ b 12 

n2π2 (t/l)3
(σel 

∗ )2 = Es
24 (h/l)2 cos θ 

regular hexagons: ∗ )2 = 0.22 Es(t/l)
3(σel √ ∗and since E2 = 4/ 3 Es(t/l)

3 = 2.31 Es(t/l)
3

strain at buckling (E∗ )2 = 0.10, for regular hexagons, independent of Es, t/l el
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∗Plateau stress: plastic yielding, σpl

• Failure by yielding in cell walls

• Yield strength of cell walls = σys

• Plastic hinge forms when cross-section fully yields

My• Beam theory — linear elastic σ = I 

• Once stress outer fiber=σys, yielding begins and then progresses through the section, as the load
increases

as P ↑
 

• When section fully yielded (right figure), form plastic “hinge”

• Section rotates like a pin
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Plastic Collapse 

Figure removed due to copyright restrictions. See Figure 8: L. J. Gibson, 
M. F. Ashby, et al."The Mechanics of Two-Dimensional Cellular Materials."
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• Moment at formation of plastic hinge (plastic moment, Mp):
b t t σys b t

2

Mp = σys = 
2 2	 4 

• Applied moment, from applied stress

2Mapp − PL sin θ = 0 

P l sin θ 
Mapp = 

2 
P 

σ1 = = σ1 (h + l sin θ) b(h + l sin θ) b	 Mapp 

• Plastic collapse of honeycomb at (σpl	 = Mp
∗ )1, when Mapp

l sin θ ))b t2∗ )1 (h + l sin θ) ))b(σpl	 = σys
 2   4 2 

l sin θ
 

2t 1∗ )1(σpl = σys
l 2(h/l + sin θ) sin θ 

22 t∗ )1regular hexagons: (σpl = σys
3 l 

2t 1∗ )2similarly, (σpl = σys
l 2 cos2 θ 

18

2 

( )( )

( )
( )

( )



  

• For thin-walled honeycombs, elastic buckling can precede plastic collapse ( for σ2)

∗ )2• Elastic buckling stress = plastic collapse stress (σel 
∗ )2 = (σpl 

n2π2 (t/l)3 σys(t/l)
2

Es  = 
24 (h/l)2 cos θ	 2 cos2 θ 

12 (h/l)2 σys
(t/l)critical = 

n2 π2 cos θ Es

σys
regular hexagons:(t/l)critical = 3 

Es

• E.g. metals σys/Es ∼ .002 (t/l)critical ∼ 0.6% 

◦ most metal honeycomb denser than this
polymer σys/Es ∼ 3 − 5% (t/l)critical ∼ 10-15%

◦ low density polymers with yield point may buckle before yield
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Plastic stress: brittle crushing, (σ∗cr)1

• Ceramic honeycombs — fail in brittle manner

• Cell wall bending — stress reaches modulus of rapture — wall fracture loading in x1 direction:

P = σ1 (h+ l sin θ) b σfs = modulus of rupture of cell wall

P l sin θ σ1 (h+ l sin θ) b l sin θ
Mmax. applied = =

2 2

Moment at fracture, Mf ( )( )1 t 2 σ 2
fs b t

Mf = σfs b t =
2 2 3 6

( )2
(σ∗

t 1
cr)1 = σfs

l 3 (h/l + sin θ) sin θ

( )4 t 2

regular hexagons: (σ∗cr)1 = σfs
9 l
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Brittle Crushing 
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge 
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



Tension
 

• No elastic buckling

• Plastic plateau stress approx. same in tension and compression
(small geometric difference due to deformation)

• Brittle honeycombs: fast fracture

Fracture toughness 

Assume: • crack length large relative to cell size (continuum assumption)
• axial forces can be neglected
• cell wall material has constant modulus of rapture, σfs

Continuum: crack of length 2c in a linear elastic solid material normal to a remote tension stress 
σ1 creates a local stress field at the crack tip 

√ 
σ1 π c 

σlocal = σl = √ 
2π r 
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Fracture Toughness 
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Honeycomb: cell walls bent — fail when applied moment = fracture moment 

Mapp ∝ P l on wall A 
√ 

σ1 c l2 b 
Mapp ∝ P l ∝ σl l

2 b ∝ √ ∝ σfs b t
2

l
 
2t l 

(σ ∗ 
f )1 ∝ σfs

l c 
√ t 2 √ 

∗ ∗ KI = σf πc = c σfs lC l 
depends on cell size, l!
 

c=constant 

Summary: hexagonal honeycombs, in-plane properties 

∗ ∗ ∗ G∗• Linear elastic moduli: E1 E2 ν12 12 

• Plateau stresses ∗ )2 elastic buckling (σel 
(compression) ∗ plastic yield σpl

∗σ brittle crushing cr 

∗• Fracture toughness brittle fracture KIC 
(tension) 
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Honeycombs: In-plane behavior — triangular cells
 

• Triangulated structures - trusses

• Can analyze as pin-jointed (no moment at joints)

• Forces in members all axial (no bending)

• If joints fixed and include bending, difference ∼ 2%

• Force in each member proportional to P

depth b into page 
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P δ P l
σ ∝ ε ∝ δ ∝ axial shortening: Hooke’s law

l b l A Es ( )
∗ σ P l P b t Es t

E ∝ ∝ ∝ ∝ Es
ε l b δ b P l l

E∗ = c Es (t/l)

exact calculation: E∗ = 1.15 Es (t/l) for equilateral triangles



Square and Triangular 
Honeycombs 
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