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Trabecular bone 

•	 Foam-like structure 

•	 Exists at ends of long bones — ends have longer surface area than shafts to reduce stress on cartilage 
at joints; trabecular bone reduces weight 

•	 Also exists in skull, iliac crest (pelvis) — forms sandwich structure — reduces weight 

•	 Also makes up core of vertebrae 

•	 Trabecular bone of interest: (1) osteoporosis (2) osteoarthritis (3) joint replacement 

Osteoporosis 

•	 Bone mass decreases with age; osteoporosis — extreme bone loss 

•	 Most common fractures: hip (proximal femur)
 
vertebrae
 

•	 At both sites, most of load carried by trabecular bone 

•	 Hip fractures especially serious: 40% of elderly patients (>65 years old) die within a year (often due 
to loss of mobility — pneumonia) 

•	 300,000 hip fractures/year in US 

•	 Costs $17 billion in 2005 
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Trabecular bone 

 
Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
 
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Osteo arthritis 

• Degradation of cartilage at joints 

• Stress on cartilage affected by moduli of underlying bone 

• Cortical bone shell can be thin (e.g. < 1mm) 

• Mechanical properties of trabecular bone can affect stress distribution on cartilage 

Joint replacement 

• If osteoarthritis bad and significant damage to cartilage, may require joint replacement 

• Cut end of bone off and insert stem of metal replacement into hollow of long section of bone 

• Metals used: titanium, cobalt-chromium, stainless steel 

• Bone grows in response to loads on it 

Trabecular bone: density depends on magnitude of σ
 
orientation depends on direction of principal stresses
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• Mismatch in moduli between metal and bone leads to stress shielding 

E(GPa) E(GPa)
 
Co - 28Cr - Mo 210 Cortical bone 18
 
Ti alloys 110 Trab. bone 0.01-2
 
316 Stainless Steel 210
 

• After joint replacement, remodeling of remaining bone affected 

◦ Stiffer metal carries more of load, remaining bone carries less 

◦ Bone may resorb — can lead to loosening of prosthesis 

◦ Can cause problems after ∼ 15 years 

◦ Reasons surgeons don’t like to do joint replacement on younger patients 

Sturcture of trabecular bone 

• Resembles foam: “trabecula” = little beam (Latin) 

• Relative density typically 0.05-0.50 

• Low density trabecular bone — like open cell foam 

• Higher density — becomes like perforated plates 

• Can be highly anisotropic, depending on stress field 
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Trabecular Bone Structure 

Lumbar spine Femoral head Lumbar spine 
11% dense 26% dense 6% dense 

42 year old male 37 year old male 59 year old male 

Ralph Muller, ETH Zurich 
Micro-CT images 
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Images removed due to copyright restrictions.



Femoral head Femoral head Femoral condyle (knee) 
     

Source: Gibson. L. J. "The Mecahnical Behaviour of Cancellous Bone." Journal of 
Biomechanics 18 (1985): 317-28. Courtesy of Elsevier. Used with permission.
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Trabecular Bone Structure 

http://www.sciencedirect.com/science/article/pii/0021929085902878


Bone grows with response to loads
 

• Studies on juvenile guinea fowl (Ponzer et al 2006) 

(a) running on level treadmill 

(b) running on inclined treadmill (20◦) 

(c) control — no running 

• Measured knee flexian angle at max force on treadmill 

• After ∼6 weeks, sacrificed birds and measured orientation of peak trabecular density (OPTD) 

• Knee flexian angle changed by 13.7◦ with incline vs level treadmill running 

• OPTD changed by 13.6◦ with incline vs level treadmill running 

• Orientation of trabecula changed to match orientation of loading 

• Video: Concord Field Station (Science Friday) 
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Trabecular architecture and  
mechanical loading  

Figure  removed  due  to co pyright re strictions.  See  Figure  1: Pontzer,  H.,  et al .  "Trabecular Bone  in  the Bird  Knee  Responds
with  High S ensitivity  to C hanges in  Load Orientation."  The  Journal  of  Experimental Biology  209  (2006): 57-65.
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http://jeb.biologists.org/content/209/1/57.abstract
http://jeb.biologists.org/content/209/1/57.abstract


Figure  removed  due  to co pyright re strictions.  See  Figure  7: Pontzer,  H.,  et al .  "Trabecular Bone  in  the Bird  Knee  Responds
with  High S ensitivity  to C hanges in  Load Orientation."  The  Journal  of  Experimental Biology  209  (2006): 57-65.
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Trabecular architecture and 
mechanical loading 

http://jeb.biologists.org/content/209/1/57.abstract
http://jeb.biologists.org/content/209/1/57.abstract


Video: "Studying  Locomotion  With  Rat  Treadmills,  Wind  Tunnels."  March  9,  2012.  Science Friday. Accessed  November 12,  2014.
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http://www.sciencefriday.com/video/03/09/2012/coolest-lab-ever.html


Properties of solid in trabeculae
 

•	 Foam models: require ρs, Es, σys for the solid 

•	 Ultrasonic wave propagation Es = 15 − 18 GPa 

•	 Finite element models of exact trabecular architecture from micro-CT scans 
If do uniaxial compression test — can measure E∗ and back-calculate Es 

Es = 18 GPa 

•	 Find properties of trabeculae (solid) similar to cortical bone: 

ρs = 1800 kg/m3 

Es = 18 GPa 

σys =182 MPa (compression)
 

σys =115 MPa (tension)
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Mechanical Properties of Trabecular Bone 

• Compressive stress-strain curve - characteristic shape 

• Mechanisms of deformation and failure 

◦ Usually bending followed by inelastic buckling 

◦ Sometimes, if trabeculae are aligned or very dense: axial deformation 

◦ Observations by deformation stage in µCT ; also FEA modeling 

• Tensile σ − E curve: failure at smaller strains; trabecular micro cracking 

• Data for E∗, σ∗, σ∗ (normalized by values for cortical bone) c T 

–	 Spread is large — anisotropy, alignment of trabecular orientation and loading direction; 
variations in solid properties, Ė, species 

• Models — based on open-cell foams 

Data generally consistent 
Compression E∗/Es ∝ (ρ∗/ρs)2 bending 

with models 
σ∗ /Es ∝ (ρ∗/ρs)2 buckling el Also: statistical analysis of data 

E∗, σ∗ ∝ ρ2 
cTension σ∗ /σys ∝ (ρ∗/ρs)3/2 plastic hinges T 

Note: compression: E∗ = constant = 0.7%el 
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Hayes and Carter, 1976 

Figure  removed  due  to co pyright re strictions.  See  Fig.  1: Hayes,  W.  C.,  and  D.  R.  Carter.  "Postyield Behavior

of  Subchondral  Trabecular Bone."  Journal of Biomedial Materials Research  10,  no.  4  (1976): 537-44.
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Compressive  
stress-strain curves 

http://onlinelibrary.wiley.com/doi/10.1002/jbm.820100409/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jbm.820100409/abstract


Muller et al, 1998 

Images removed  due  to co pyright re strictions.  See  Figure  5: Müller,  R.  S.  C.  Gerber,  and  W. C.  Hayes. "Micro-compression:
A  Novel Tech nique  for the  Non-destructive  Assessment o f  Bone  Failure."  Technology  and  Health  Care  6  (1998): 433-44.
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Compression 
Whale Vertebra 

http://www.ncbi.nlm.nih.gov/pubmed/10100946
http://www.ncbi.nlm.nih.gov/pubmed/10100946


Nazarian and Muller 2004 

Source: Narzarian, A., and R. Müller. "Time-lapsed Microstructural Imaging of Bone Failure Behavior." 
Journal of Biomechanics 37 (2000): 1575-83. Courtesy of Elsevier. Used with permission.
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http://www.sciencedirect.com/science/article/pii/S0021929003002549


10 
 Human Vertebral Bone 

Mueller, ETH 
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Images removed due to copyright restrictions.



Carter et al., 1980 

Figure  removed  due  to co pyright re strictions.  See  Fig.  5.6: Gibson,  L. J.,  et al .
Cellular Materials in Nature  and  Medicine.  Cambridge  University Pr ess,  2010.
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Tension 

http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA135


Gibson,  L.  J.,  M.  Ashby, et  al. Cellular Materials in  Nature  and  Medicine. Cambridge  University
Press, © 2010.  Figures  courtesy  of  Lorna Gibson  and  Cambridge  University  Press.
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Gibson, L. J., M. Ashby, et al. Cellular Materials in Nature and Medicine. Cambridge University
Press, © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.
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•	 In some regions, trab. may be aligned: e.g. parallel plates 

◦	 deformation then axial E∗ ∝ ρ
 
(in longitudinal direction) σ∗ ∝ ρ
 

•	 Can also summarize data for solid trabeculae and trabecular bone (similar to wood)
 
Solid-composite of hydroxyapatite and collagen
 

Osteoporosis (Latin: “porpus bones”) 

•	 As age, lose bone mass 

•	 Bone mass peaks at 25 years, then decreases 1-2% per year 

•	 Women, menopause — cessation of estrogen production, increases rate of bone loss 

•	 Osteoporosis defined as bone mass 2.5 standard deviations (or more) below young normal mean 

•	 Trabeculae thin and then resorb completely 
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Aligned Trabeculae 

Femoral Condyle (Knee) 
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Source: Gibson. L. J. "The Mecahnical Behaviour of Cancellous Bone." Journal of 
Biomechanics 18 (1985): 317-28. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/0021929085902878


Gibson, L. J., M. Ashby, et al. Cellular Materials in Nature and Medicine. Cambridge University
Press, © 2010. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Gibson, L. J., M. Ashby, et al. Cellular Materials in Nature and Medicine. Cambridge University
Press, © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Figure  removed  due  to co pyright re strictions.  See  Figure  1:  Vajjhala,  S.,  A.  M.  Kraynik,  et al .  "A Cellular Solid Model f or
Modulus Reduction  due  to  Resorption  of  Trabecular Bone."  Journal of Biomechanical Engineering  122,  no.  5  (2000): 511–15.
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Osteoporosis 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063


• As trabeculae thin - buckling easier σ∗ ∝ (ρ/ρs)2

• Once trabeculae begin to resorb, connectivity reduced, strength drops dramatically

• Modeling:

◦ Can’t use unit cell or dimensional analysis (need to model local effects)

◦ Finite element modeling

◦ Initially: − 2D Voronoi honeycombs
Matt Silva − 2D representation of vertebral bone

− 3D Voronoi foam — Surekha Vajjbala 

Voronoi honeycomb 

• Random seed points, draw perpendicular bisectors

• Use a minimum separation distance to get cells of approximately uniform size

• FE analysis — each trabecula a beam element

• First calculated elastic moduli

◦ FEA results close to analytical model for random (isotropic) honeycomb (40 models, all same
ρ∗/ρs, about 25x25 cells in each)

◦ Modulus is average of stiffness over entire material
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Silva et al, 1995      
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Source: Silva, M. J., L. J. Gibston, et al. "The Effects of Non-periodic Microstructure on the Elastic Properties of Two-dimensional 
Cellular Solids." International Journal of Mechanical Sciences 37 (1995): 1161-77. Courtesy of Elsevier. Used with permission.

Modelling: 2D Voronoi 

http://www.sciencedirect.com/science/article/pii/002074039400018F
http://www.sciencedirect.com/science/article/pii/002074039400018F


Silva et al, 1995 
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Source: Silva, M. J., L. J. Gibston, et al. "The Effects of Non-periodic Microstructure on the Elastic Properties of Two-dimensional 
Cellular Solids." International Journal of Mechanical Sciences 37 (1995): 1161-77. Courtesy of Elsevier. Used with permission.

2D Voronoi 

http://www.sciencedirect.com/science/article/pii/002074039400018F
http://www.sciencedirect.com/science/article/pii/002074039400018F


• Next, calculated compressive strength of Voroni honeycombs

• Each cell wall 1-3 beam elements

• Model non-linear elasticity and failure behavior

• 15x15 cells in model (random seeds ≈ isotropic)

• Cell wall assumed to be elastic – perfectly plastic σys/Es = 0.01 vs = 0.3

• For this value of σys/Es, transition between elastic buckling and plastic collapse stress at ρ∗/ρs = 0.035
in regular hexagonal honeycomb

• Calculated compressive strength of honeycombs with ρ∗/ρs = 0.015, 0.035, 0.05, 0.15

• Generated 5 different Voronoi honeycombs at each ρ∗/ρs

• Compressive σ − E behavior:

ρ∗/ρs ≥ 0.05 -strain softening, permanent deformation on unloading 

-plastic hinge formation, cell collapse in narrow localized bands 

ρ∗/ρs  0.035 -non-linear elastic deformation - recoverable 

Strength: 0.6 to 0.8 of σ∗ 
periodic
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Relative density = 15% Plastic failure Silva et al, 1997
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2D Voronoi 

Source: Silva, M. J., and L. J. Gibson. "The Effects of Non-periodic Microstructure and Defects on the Compressive Strength of Two-dimensional 
Cellular Solids." International Journal of Mechanical Sciences 39 (1997b): 549-63. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0020740396000653
http://www.sciencedirect.com/science/article/pii/S0020740396000653


2D Voronoi 

Relative density 1.5%; elastic buckling failure 
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Silva et al, 1997 
Source: Silva, M. J., and L. J. Gibson. "The Effects of Non-periodic Microstructure and Defects on the Compressive Strength of Two-dimensional 
Cellular Solids." International Journal of Mechanical Sciences 39 (1997b): 549-63. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0020740396000653
http://www.sciencedirect.com/science/article/pii/S0020740396000653


2D Voronoi 
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Silva et al, 1997 
Source: Silva, M. J., and L. J. Gibson. "The Effects of Non-periodic Microstructure and Defects on the Compressive Strength of Two-dimensional 

Cellular Solids." International Journal of Mechanical Sciences 39 (1997b): 549-63. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0020740396000653
http://www.sciencedirect.com/science/article/pii/S0020740396000653


• Max. normal strains at nodes in honeycombs (linear elastic).

◦ Voronoi honeycombs — normal distribution

◦ Regular hexagonal honeycombs — dashed lines on plot

◦ Normal strain in vertical cell walls in regular hexagonal honey combs — mean normal strain in
Voronoi

◦ Oblique walls — bending — larger strains

◦ Voronoi honeycomb 5% of strain outside of range of strain in regular hexagonal honeycomb

◦ Decrease in strength associated with broader range of strains in Voronoi honeycombs

◦ Minimum strength at ρ∗/ρs = 0.05

— Interaction between elastic buckling and plastic yield 

�	 �2π2EI π2 E π r4 π2 r 
σcr = = = E 

l2 4 l2 π r2 4 l 
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2D Voronoi 

Silva et al, 1997 

Figure  removed  due  to co pyright r estrictions.  See  Figure  5; Silva,  M.  J.,  and  L.  J.  Gibson.  "The  Effects
of  Non-periodic Microstructure  and  Defects on  the  Compressive  Strength  of  Two-dimensional  Cellular
Solids."  International   Journal   Mechanical   Sciences  39,  no.  5  (1997): 549-63.
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http://www.sciencedirect.com/science/article/pii/S0020740396000653
http://www.sciencedirect.com/science/article/pii/S0020740396000653
http://www.sciencedirect.com/science/article/pii/S0020740396000653


Voronoi honeycombs - defects 

• Randomly removed cell walls in both Voronoi and regular honeycombs

• Analyzed both by FEA

• Dramatic decrease in modulus and strength, compared with equivalent reduction in density by thin­
ning of cell walls

• ρ∗/ρs = 0.15 failure by yielding 

• ρ∗/ρs = 0.015 failure by elastic buckling

• Modulus and strength reduction similar for Voronoi and regular hexagonal honeycombs

• Percolation threshold for 2D network hexagonal cells ⇒ 35% struts removed

Vertebral trabecular bone - 2D model 

• Model adapted to reflect trabeculae more aligned in vertical and horizontal directions

• Perturbed a square array of struts to get similar orientation and struts as in bone

• Looked at reduction in number and thickness of longitudinal and transverse struts (independently)
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Silva et al, 1997 
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2D Voronoi 

Source: Silva, M. J., and L. J. Gibson. "The Effects of Non-periodic Microstructure and Defects on the Compressive Strength of Two-dimensional 
Cellular Solids." International Journal of Mechanical Sciences 39 (1997b): 549-63. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0020740396000653
http://www.sciencedirect.com/science/article/pii/S0020740396000653


Vajjhala et al, 2000 

Figure  removed  due  to co pyright re strictions.  See  Figure  2:  Vajjhala,  S.,  A.  M.  Kraynik,  et al .  "A Cellular Solid Model f or
Modulus Reduction  due  to  Resorption  of  Trabecular Bone."  Journal of Biomechanical Engineering  122,  no.  5  (2000): 511–15.
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2D Voronoi 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063


Silva et al, 1997 
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Source: Silva, M. J., and L. J. Gibson. "Modelling the Mechancial Behavior of 
Vertebral Trabecular Bone: Effects of Age-related Changes in Microstructure." 
Bone 21 (1997a): 191-99. Courtesy of Elsevier. Used with permission.

Vertebral Trabecular Bone 

http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


Silva et al, 1997 

Figure  removed  due  to co pyright re strictions.  See  Figure  3:  Silva,  M.  J.,  and  L.  J.  Gibson.  "Modelling the  Mechancial
Behavior of  Vertebral  Trabecular Bone: Effects of  Age-related  Changes in Microstructure."  Bone  21  (1997): 191-99.
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Vertebral Trabecular Bone 

http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


Silva et al, 1997 

Figure  removed  due  to co pyright re strictions.  See  Figure  4:  Silva,  M.  J.,  and  L.  J.  Gibson.  "Modelling the  Mechancial
Behavior of  Vertebral  Trabecular Bone: Effects of  Age-related  Changes in Microstructure."  Bone  21  (1997): 191-99.
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Vertebral Trabecular Bone 

http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


Vertebral Trabecular Bone 

Silva et al, 1997 

Figure  removed  due  to co pyright re strictions.  See  Figure  5:  Silva,  M.  J.,  and  L.  J.  Gibson.  "Modelling the  Mechancial
Behavior of  Vertebral  Trabecular Bone: Effects of  Age-related  Changes in Microstructure."  Bone  21 (1997): 191-99.
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http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


Silva et al, 1997 
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Source: Silva, M. J., and L. J. Gibson. "Modelling the Mechancial Behavior of 
Vertebral Trabecular Bone: Effects of Age-related Changes in Microstructure." 
Bone 21 (1997a): 191-99. Courtesy of Elsevier. Used with permission.

Vertebral Trabecular Bone 

http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


Silva et al, 1997 

Figure  removed  due  to co pyright re strictions.  See  Figure  7:  Silva,  M.  J.,  and  L.  J.  Gibson.  "Modelling the  Mechancial
Behavior of  Vertebral  Trabecular Bone: Effects of  Age-related  Changes in Microstructure."  Bone  21  (1997): 191-99.
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Vertebral Trabecular Bone 

http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


Silva et al, 1997 

43

     Source: Silva, M. J., and L. J. Gibson. "Modelling the Mechancial Behavior of 
Vertebral Trabecular Bone: Effects of Age-related Changes in Microstructure." 
Bone 21 (1997a): 191-99. Courtesy of Elsevier. Used with permission.

Vertebral Trabecular Bone 

http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract
http://www.thebonejournal.com/article/S8756-3282(97)00100-2/abstract


3D Voronoi Model
 

• Same analysis, now with 3D Voronoi model 

• Periodic 3x3x3 cells, ρ∗/ρs = 0.1 

• Used beam elements, FEA, linear elastic only 

• Percolation threshold ∼ 50% struts removed 

• Comparison of 2D and 3D results for modulus: in 3D, modulus reduction more gradual than in 2D 

• Also for 2D and 3D — modulus reduction similar for regular and Voronoi structures 
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Vajjhala et al, 2000 

Figure  removed  due  to co pyright re strictions.  See  Figure  7:  Vajjhala,  S.,  A.  M.  Kraynik,  et al .  "A Cellular Solid Model f or
Modulus Reduction  due  to  Resorption  of  Trabecular Bone."  Journal of Biomechanical Engineering  122,  no.  5  (2000): 511–15.
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3D Voronoi Model 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063


Vajjhala et al, 2000 

Figure  removed  due  to co pyright re strictions.  See  Figure  7:  Vajjhala,  S.,  A.  M.  Kraynik,  et al .  "A Cellular Solid Model f or
Modulus Reduction  due  to  Resorption  of  Trabecular Bone."  Journal of Biomechanical Engineering  122,  no.  5  (2000): 511–15.
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3D Voronoi Model 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1404063


Metal foams as bone substitute materials
 

• Metals used in orthopedic implants (e.g. hip, knee) 

• Co-Ci, Ti, Ta, stainless steel alloys 

• Biocompatible, corrosion resistant 

• But moduli of metals are greater than modulus of bone 
e.g. ETi = 110 GPa, Ecortical = 18 GPa, Etrab.bone = 0.01 − 2 GPa 

• Stress shielding can lead to bone resorption 

• To improve mechanical interaction between implant and bone: 

◦ porous sintered metal beads used to coat implants - promote bone ingrowth 

◦ also, wire mesh coatings have been developed, primarily for flat implant surfaces 

◦ recently, interest in using metal foams as coatings 

◦ longer term, interest in using in replacement vertebral bodies 

• Variety of processes for making metal foam implant coatings 
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Ta, replicating PU foam Ti, replication of PU 
with CVD foam by slurry infiltration 
 and sintering 
  
  
  
Ti, fugitive phase Ti, foaming agent 
  
  
  
  
  
  
Ti, expansion of Ar gas Ti, freeze-casting 
 (freeze-drying) 
  
  
  
  
Ti, selective laser Ni-Ti, high temperature 
sintering synthesis (powders 
 mixed, pressed and 

Image sources given in ignited by, for example, 
Cellular Materials in Nature  tungsten coil heated by 
and Medicine electrical current) 
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Images removed due to copyright restrictions. See Figure 8.1:
Gibson, L. J., M. Ashby, and B. A. Harley. Cellular Materials in
Nature and Medicine. Cambridge University Press, 2010.
http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA228

Metal Foams: Microstructure 

http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA228


Processing 

(a) Replicate open cell polyurethane foam 

•	 Pyrolize PU foam → 2% dense vitreous carbon 

•	 Coat with Ta by CVD ⇒ struts 99% Ta, 1% C 

•	 Cell size 400 − 600 µm; coating thickness 40 − 60 µm, ρ∗/ρs = 0.15 − 0.25 

•	 “Trabecular metal” (Zimmer) trade name 

•	 Ta forms surface oxide Ta2O5 — does not bond to bone 

•	 But, if treat with dilute NaOH, then heat to 300◦ and cool, then submerge in simulated body 
fluid (ion concentration matches human blood plasma) 
⇒ get apatite coating on foam struts, which bonds to bone 

(b) Infiltrate slurry of titanium hydride into open cell foam 

•	 Heat-treat to decompose TiH2 

•	 Sinter remaining Ti (also removes initial foam) 

(c) Fugitive phase methods 

•	 Mix Ti powder and fugitive phase powder 

•	 Heat to T1 (∼ 200◦ C) to decompose filler, then to T2 (1200
◦ C) to sinter Ti powder 
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Foaming agent evolves 
gas at temperature at 
which polymer is liquid 

Gibson, L. J., M. Ashby, et al. Cellular Materials in Nature and Medicine. Cambridge University
Press, © 2010. Figures courtesy of Lorna Gibson and Cambridge University Press.

50

Metal Foams: Processing 



Processes 

(d) Expansion of foaming agent 

(e) Freeze casting (freeze dying) 

(f) Rapid prototyping (3D Printing, selective laser sintering) 

σ − E curves - similar to other foams 

Data for E∗ , σ∗ 
c 
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Source: Wen, C. E., M. Mabuchi, et al. "Processing of Biocompatible Porous Ti and Mg." 
Scripta Materialia 45 (2001): 1147-53. Courtesy of Elsevier. Used with permission.

Ti Foam: Stress-strain 

http://www.sciencedirect.com/science/article/pii/S1359646201011320


Gibson, L. J., M. Ashby, et al. Cellular Materials in Nature and Medicine. Cambridge University
Press, © 2010. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Bone in Evolutionary Studies 



Bone structure in evolutionary studies 

• Phylogenetic chart — big picture — structural biomaterials (mineralized) 

• Sponges — first multi-celled animal 

◦ calcarea: CaCO3 spicules (needles) 

◦ hexactinellida: SiO2 — “glass sponges” 

◦ demospongiae: most sponges — some have SiO2 spicules 
— spongin (type of collagen) 

• Cnidarians - e.g. corals, jellyfish 

◦ Corals CaCO3 

• Mollusca — bivalves, snails, octopus 

◦ if mineralized CaCO3 

• Arthropods e.g. hexapoda (insects), arachnide (spiders), crustaceans (shrimp, lobster) 

◦ Exoskeleton of insects and spiders: chitin 

◦ Crustaceans: chitin may be mineralized with CaCO3 
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Vertebrates 

• Cyclostomata 

◦ jawless fish — lampreys hagfish 

◦ no vertebra — notochord 

◦ no bone 

• Chondrichthye 

◦ sharks, rays, skates 

◦ cartilagenous skeleton — some mineralization, but not true bone 

• Actinopterygii 

◦ ray-finned fish 

◦ true bone 

◦ 450 million years ago 

Bone structure and loading 

• Bone grows in response to loading 

• Bone structure reflects mechanical loading and function; e.g. quadruped vs. biped 

• Evolutionary studies have looked at trabecular bone architecture and density 
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Hedges and Kumar, 2009 
From: The Timetree of Life. Hedges, S. B., and S. Kumar (eds.) © 2009 Oxford University Press. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Venus Flower Basket 
(Euplectella aspergillum) 
 
•  Hierarchical structure 
•  Remarkably stiff, tough 
•  Joanna Aizenberg (Harvard) 
•  Aizenberg et al (2004) Biological 

glass fibers: correlation between 
optical and structural properties.  
PNAS 
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Hedges and Kumar, 2009 

From: The Timetree of Life. Hedges, S. B., and S. Kumar (eds.) © 2009 Oxford University Press. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Trabecular bone studies in human evolution 

Oreopithecus bambolii (Rook et al, 1999) 

•	 7-9 Million years ago, late Miocene hominid, found in Italy 

•	 Quadruped or biped? 

•	 Compared trabecular architecture in ilium in apes, o. bambolii, humans 

•	 Only had two fragments of ilium — left and right 

•	 Took radiographs of both and digitally reconstructed a single ilium 

Comparisons 

(a) Posterosuperior margin — marginal handles thicker than apes 

(b) Anteriosuperior margin — iib bundle relatively structured compared to apes 

(c) Anterioinferior margin — well-developed a-i spine not seen in apes 

(d) Supra acetabular area — high density region 

•	 Collectively, observations suggest O. bambolii trab. architecture in ilium more similar to humans 
than apes 

•	 Suggests habitual bipedal locomotion (humans — obligatory bipeds) 
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Oreopithecus	
  bambolii:	
  	
  Ilium	
  
Rook	
  et	
  al.	
  (1999)	
  	
  

hgp://en.wikipedia.org/wiki/Iliac_crest	
  

Image is in the public domain. Source: Wikimedia Commons. 
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Trabecular	
  architecture:	
  
Ilium	
  

Figure removed due to copyright restrictions. See Figure 1: Rook L., et al. "Oreopithecus was a

Bipedal Ape after All." Proceedings of the Natural Academy of Sciences 96 (1999): 8795-99.
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Figure removed due to copyright restrictions. See Figure 2: Rook L., et al. "Oreopithecus was a

Bipedal Ape after All." Proceedings of the Natural Academy of Sciences 96 (1999): 8795-99.
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Digitally	
  reconstructed	
  ilium	
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Comparison	
  of	
  trabecular	
  architecture	
  

Figure removed due to copyright restrictions. See Figure 3: Rook L., et al. "Oreopithecus was a

Bipedal Ape after All." Proceedings of the Natural Academy of Sciences 96 (1999): 8795-99.
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