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|. Review / Summary of Cantilever Beam Theory from 3.032 [1]

A cantilevered beam is one that is fixed at one end and free at the opposite
end, as shown in Figure 1.
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Figure 1. Nomenclature for a cantilevered beam with rectangular cross section

; L=length or span (m), b=width (m), t=height or thickness (m), [=moment of

inertia of cross-sectional area (m*), E=Young’s (elastic) modulus (Pa=N/m?),
and EI=flexural modulus (Nm®)

Consider the case where a concentrated force is applied in the downwards
direction at the free end of a cantilever (Figure 2.).
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Figure 2. A loaded, cantilevered beam and corresponding free-body diagram
A free-body diagram of the beam shows that a reactant shear force, V, and a

reactant bending moment M, must exist in order to maintain static equilibrium
By taking the conditions for equilibrium one finds that :

SF =0=V+F=1=F()



>XM,=0=M+FL=M=-FL (2)

No matter where a transverse cut is taken along the beam and a free-body
diagram constructed, the magnitude of the shear force, V, is found to be
constant and equal to I throughout the length of the beam:

V(x) = F = constant (3)
_dM
Since V(X)= 'E , the moment, M(x), varies linearly from a maximum of

zero at the free end to a minimum of -FL at the wall. Hence, M(x) is linear and
equal to :

M(x) = -F(L~) (4)
Equations (3) and (4) are shown graphically in Figure 3.
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Figure 3. Shear and bending moment diagrams for the cantilevered beam
given in Figure 2.

The equation for the slope of the y-displacement cutve, 6(x), is defined as
follows:

<9(x)=é [Megdx (5



Substituting equation (4) into equation (5) we obtain :

O(x) = —é]&F(L-x)dx = -éji(FL-Fx)dx

] 2
0x) = -E{(FLx) i F;‘ }+ ¢

The integration constant, C,, can be obtained from the boundary condition that
the slope of y-displacement curve, (x), must be zero at the wall (x=0):

6(0)=0= -é{(FLo)-(FTOzj}c, =C,=0

e(x)—-é{(FLx)_(Fjﬂ )

The equation for the y-displacement curve or elastic curve, y(x), can be found
as follows:

y<x>=Ie<x>dx ®

Substituting equation (7) into equation (&) we obtain :

»(x) {é{(m)-f - de

o< o

The integration constant, C,, can be obtained from the boundary condition that
the y-displacement y(x) must be zero at the wall (x=0) :




2[5 m

The maximum deflection occurs at the free end of the cantilever and can be
found by substituting x=L. into equation (70) :

FI?

Ymax (x=1L) = 35

Equations (70) and (77) are shown graphically in Figure 4.
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Figure 4. Elastic curve of cantilevered beam

By rearranging equation (77), one can obtain the applied load as a function of
the deflection at the end of the beam:

Here, we see that the applied force is directly proportional to the displacement
at the end of the beam and hence, the cantilever can be represented by a linear
elastic, Hookean spring (Figure 5.):

F=k8 (13)




where 6=y is the maximum deflection at the end of the cantilever (force

max

spectroscopy notation), and k is the “cantilever spring constant” :

vy =FI3/3EI
Figure 5. Representation of cantilevered beam by a linear elastic, Hookean
spring

Hence, k is a function only of the beam dimensions and the elastic modulus.

Typically, V-shaped cantilevers are used for high-resolution force
spectroscopy experiments (Figure 6.).
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Figure 6. Dimensions of a V-shaped cantilever beam



Table I. displays approximate formulas for the k of V-shaped cantilevers.

Table I. Formulas for the k of V-shaped cantilevers [2].
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II. Summary of Harmonic Oscillators

(*reterence : Vibrations and Waves, A. P. French, W. W. Norton and Company, NY 1971.)

I1.A. Free Vibrations

Basic Physics Equations :

d(t)=displacement(m)

v(t)=velocity(m/s)=dd(t)/dt=5'(t)
a(9)=acceleration(m/s?)= d?8(t)/de=8"(9)
F(t)=force(IN)=ma(t) where : m=mass(g)
U(8)=potential energy(Nm)= fp(é;) a8

Type of Model Equations Solutions to
Harmonic Schematic : of Motion : Equations of
Motion : Motion :
Simple Harmonic ma=F, = 3(t)=06_cos(wot-¢)
Motion (SHM) : ﬂXM\Q mOZZk /m

v=natural or resonant

frequency (Hz=1

oscillation/s=s-1)

w=natural or resonant

angular frequency=2mv

(rad/s1)

& =displacement amplitude
m

(tm)

¢=phase constant

wt+d=phase

Fs=spring recovery force

k=spring constant (N/m)

F=-k3(t) T

?
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v m
F- Oy crererrreraeraernaens

oscillating

m8" (1) +kS(t)=0
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Damped Harmonic
Motion (DHM) :

B=damping (viscosity)
coefficient

Fa=dashpot or dissipative
force

@, =natural or resonant
angular frequency for a
damped system (rad/s-1)
Q=quality factor

fixed

oscillating

ma=F+F4 =

md" (t)+p8'(t)+
kd(t)=0

o(t)=

Sme’B /2meos(m, t-)

@y =V[(k/m)-(B*/4m”)]
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I1.B. Forced Vibrations

Type of
Harmonic
Motion :

Model
Schematic :

Equations

of Motion :

Solutions to
Equations of
Motion :

Driven Harmonic

Motion (DHM) :

®= frequency of applied
force oscillation (rad/s1)

W= M, “resonance” occurs;
maximum amplitude of

oscillations, dm

—Fn

Jforced oscillation :

Fa(t)=Fmcos(wt-¢)

ma=F,-F, =

md" (1) +kd(t)=
F.(t)

3(t)=06_cos(wt-¢)
8 (0)=F /(k-mw?)

)

Fo/k /

-Fo/k
T
O wreeeee 0)0:\/k/m [0)
v
oscillating
Driven / Damped forced oscillation : ma=F+Fg-F, = S(t)ZSmCOS(’GJ’t—(w

Harmonic Motion

(DDHM) :

®= frequency of applied
force oscillation for damped
system (rad/s-1)

_p,, Fa(=Fumcos(@’t-¢)

oscillating

md''(t)+p8' () +
k&(t)=F.(t)

8 (@)=F /(k-me?)

| 8|

Fo/k

6m(max]:QFo/k(1 -1 /4Q2)1/2
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high
Q

low Q

u)oi\/k/m o’




I11. Limits of Force Detection [1-4]

The lower bound of force detection of any force spectroscopy
measurement is determined either by the resolution or thermal fluctuations
of the transducer."?

Transducer Resolution. Previously, we have shown that a high-
resolution force transducer can be represented by a linear elastic, Hookean
spring (equation (73)). Let’s assume that the minimum detectable displacement
is a one-atom deflection (9,,,=0.1 nm). Substituting this value into equation
(13) we obtain the minimum detectable force, F;.:

F_.=(0.1nmk (75)

Thermal Oscillations. In the absence of any externally applied forces,
a force transducer in equilibrium with its surroundings will fluctuate due to the
nonzero thermal energy at room temperature, kBT = 4.1010' Nm, where kyis
the Boltzmann constant = 1.38 10> J /K and T is the absolute temperature

(room temperature = 295K). If we model the force transducer as a one-
dimensional, free harmonic oscillator as shown in Figure 7.

cantilever

Figure 7. Thermal oscillation of a free cantilever beam

By neglecting higher modes of oscillation and making use of the equipartition

theorum, the average root-mean-square (RMS) amplitude of the displacement

2>1/2

oscillation, <9, , can be derived as follows.
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The potential energy of a force transducer is
)
U= jF(S)dS (16)
0

Substituting Hooke’s law for a free, one-dimensional harmonic oscillator
(equation (73)) into equation (77) and integrating gives

o
U= jokesas = U =14k&* (17)

The equipartition theorum states that if a system is in thermal equilibrium,
every independent quadratic term in the total energy has a mean value equal to

2k T. Hence,
U = Yk §, > = Yok, T (18)

where J,, is the amplitude of the displacement oscillation (Figure 7.).
Rearranging equation (7) and solving for 8, we obtain

(52) =@ 19)

where : <> denotes a statistical mechanical average over time. Substituting eq.
(19) into Hooke’s Law, equation (73), gives the equation for the RMS amplitude

fluctuations in force:
(k2= L 20

A more precise formulation can be derived for a damped harmonic oscillator?!:

Y% [k, TkB
(F2)? = o (21)

where B is the measured bandwidth (s™), Q is the quality factor =(km)"?/B, m

is the mass (Ns°/m), B is the damping coefficent (Ns/m), w,’ is the resonant
frequency for a damped system (), and k is the transducer spring constant

(N/m).
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