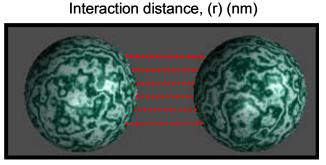
LECTURE 2: THE FORCE TRANSDUCER

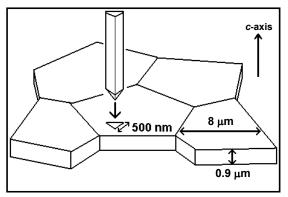
Outline:

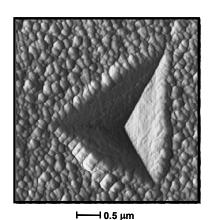
LAST TIME : WHAT IS NANOMECHANICS	2
HOW CAN WE MEASURE SUCH TINY FORCES?	
EXAMPLE OF A FORCE TRANSDUCER	
Microfabricated cantilever beams with nanosized probe tips	5
Attachments to nanosized probe tips	6
CANTILEVER BEAM THEORY	
LIMIT OF FORCE DETECTION : THERMAL OSCILLATIONS	8
BIOSENSORS	9

Objectives: To understand the basic principles of how high resolution force transducers function, their physical limitations, and applications.


Readings: Course Reader Documents 6-8

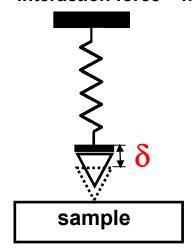
The study of forces, motions, energies, and deformations: much of 3.032 was *continuum mechanics*


LAST TIME: WHAT IS NANOMECHANICS? → subset of the field of nanotechnology, involving nN-scale forces or nm-scale displacements (nano=1•10⁻⁹)


1. Noncontact: High Resolution Force Spectroscopy, surface forces measurement (e.g. electrostatics, van der Waals forces, etc.)

2. Contact: Nanoindentation, single cell tensile testing (e.g. elasticity, plasticity, → dislocations) etc.

interaction force, F(r) (nN)


Courtesy of Benjamin Bruet and Journal of Materials Research. Used with permission.

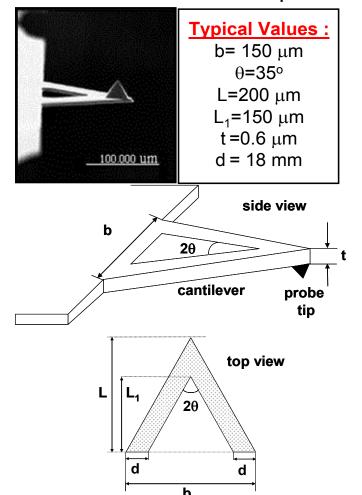
HOW CAN WE MEASURE SUCH TINY FORCES?

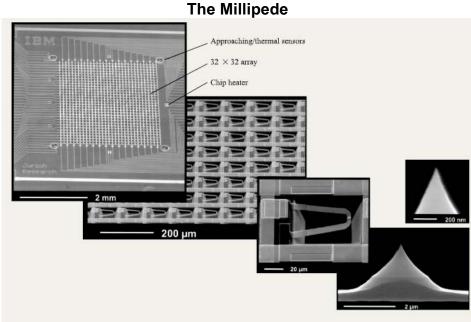
i.e. nN (=1•10⁻⁹ N), even pN (=1•10⁻¹² N)! → typical engineering structures are Newtons

Separation distance ~ nm

Interaction force ~ nN

Force Transducer- sensor device that responds to an external force where you can output and record that response


Transducer Calibration - determine the relationship between the externally applied force and output signal to automatically convert to a force


- 1) high sensitivity and 2) small in dimensions, fine probe (~ nm)
- Typically a **spring** (not conventional!) which deflects in response to a external force, δ = transducer (spring displacement), know the elastic properties (stiffness) of the spring (i.e. Hooke's Law) you can convert into force, F.

EXAMPLE OF A FORCE TRANSDUCER- Microfabricated Cantilever Beams

With Nanosized Probe Tips

Vettiger, et al. *IBM J. Res. Develop.* 44 3 2000 323 Courtesy of IBM. Used with permission.

Potential Applications:

- 1) thermomechanical data storage in thin polymer media -High throughput 2) imaging/characterization3) nanolithography
 - 4) atomic and molecule manipulations

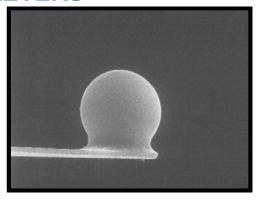

ATTACHMENTS TO NANOSIZED PROBES AT THE END OF MICROFABRICATED CANTILEVERS

Image removed due to copyright restrictions.

Single Cell *Dictyostelium Discoideum* (Benoit, et al. *Nature Cell. Bio* **2000**, 2 (6), 313.)

Image removed due to copyright restrictions.

E. Coli Bacteria Ong, et al. *Langmuir* **1999**, 15, 2719.

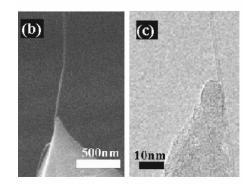
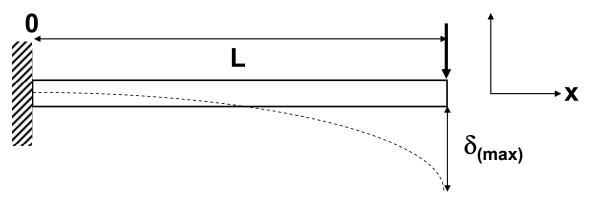

Colloid: Seog, Ortiz/ Grodzinsky Labs 2001

Image removed due to copyright restrictions.

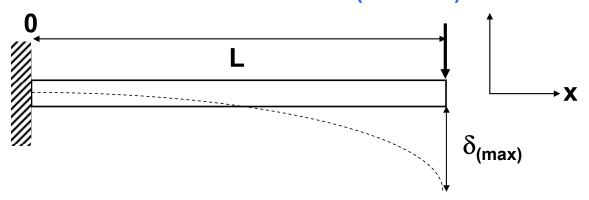
Nanotube Tips (Biomolecule Functionalized):
Wong et al. Nature 1998, 394

Wong et al. *Nature* **1998**, *394* (6688), 52.

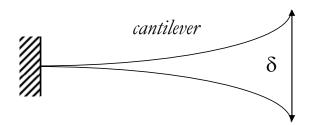
Nanotube Tips:



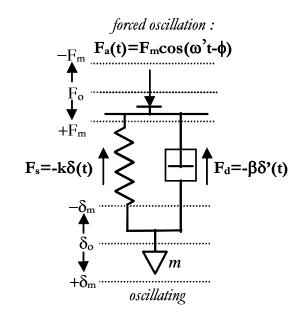
Courtesy of American Institute of Physics. Used with permission.

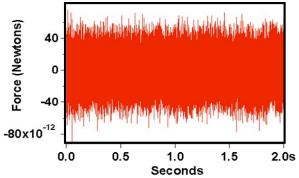

Fig. 2b and c in Yenilmez, E. et al. "Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy."

Applied Phys Lett 80, no. 12 (2002): 2225.

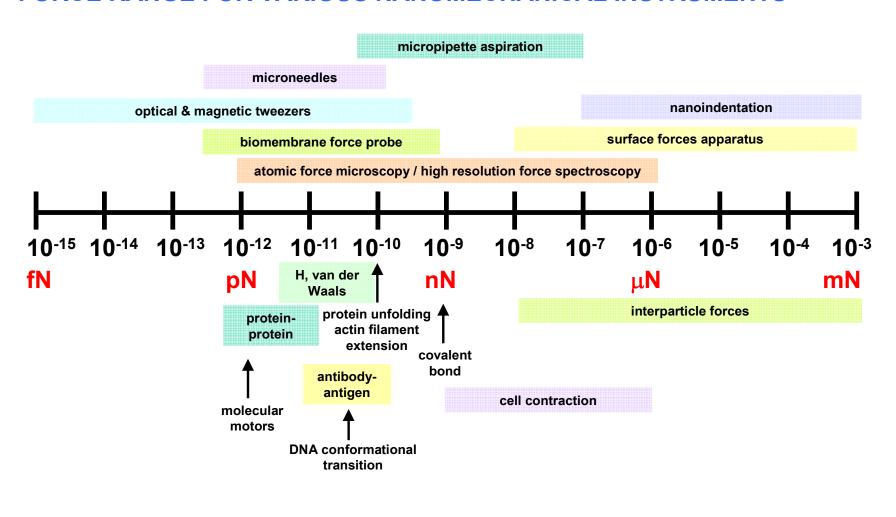

CANTILEVER BEAM THEORY

CANTILEVER BEAM THEORY (CONT'D)


LIMIT OF FORCE DETECTION: THERMAL OSCILLATIONS



In the absence of any externally applied forces [e.g. far away from the cantilever surface], a high resolution force tranducer will oscillate at its natural resonant frequency (maximum displacement of the amplitude of the oscillations) due to a non-zero thermal energy, k_BT (room temperature)= $4.1 \cdot 10^{-21}$ J \rightarrow the system can be modeled as a driven, damped harmonic oscillator.


These oscillations are the background noise in the nanomechanical experiment and are given by the following equation:

$$F_{min} = 1.007t \left(\frac{w}{lQ}\right)^{1/2} \left(E\rho\right)^{1/4} \left(k_B T b\right)^{1/2}$$

FORCE RANGE FOR VARIOUS NANOMECHANICAL INSTRUMENTS

BIOSENSORS

Podcast: Lipid Bilayer Formation

Guest: Professor Jurgen Fritz (International University Bremen; soon to be Jacobs

University Bremen, Germany)

Citation: Pera, I. & Fritz, J. Sensing lipid bilayer formation and expansion with a

microfabricated cantilever array. Langmuir. 23, 1543-1547 (2007)