LECTURE 10: MOLECULE-SURFACE INTERACTIONS

Outline:

LAST LECTURE: BRIDGING THE GAP BETWEEN LENGTH SCALES	2
MOLECULE-SURFACE INTERACTIONS: MOLECULAR ORIGINS OF BIOCOMPATIBILITY	
CALULATION OF THE NET POTENTIAL FOR INTERACTING BODIES	
Volume Integration Method : Procedures and Assumptions	4
Molecule-Surface Interactions	5-8
Geometry	5
Derivation 1	
Derivation 2	7
Dispersion, London	8

Objectives: To mathematically scale up intermolecular potentials to intersurface and interparticle potentials

Readings: Course Reader documents 22 & 23 and Israelachvili, Chapter 10.

Multimedia: Bonding and Protein Structure Demo (California Lutheran University).

(nN)

Force, F

BRIDGING THE GAP BETWEEN LENGTH SCALES

-A typical inter- atomic, ionic, or intamolecular potential (e.g. LJ potential)

Intermolecular Separation Distance, r(nm)

force vs. separation distance curve

A typical intersurface or interparticle

Tip-Sample Separation Distance, D (nm)

$$w(r)$$
 or $U(r) \rightarrow f(r)$

(one atom, ion, or molecule)

$$w(r) = -Ar^{-6}$$

 $W(D) \rightarrow F(D)$

(net interaction between larger bodies, i.e. assemblies of atoms, ions, or molecules)

MOLECULE-SURFACE INTERACTIONS: MOLECULAR ORIGINS OF BIOCOMPATIBILITY

BLOOD FLOW

CALCULATION OF THE NET POTENTIAL FOR INTERACTING BODIES: VOLUME INTEGRATION METHOD: PROCEDURES AND ASSUMPTIONS

- 1) Choose the mathematical form of the interatomic/ionic/molecular potential, w(r) (e.g. in this case we will use an arbitrary power law : $w(r) = -\frac{A}{r^n}$)
- 2) **Set up the geometry** of the particular interaction being derived (e.g. molecule-surface, particle-surface, particle-particle, etc.)
- 3) **Assume "pairwise additivity"**; i.e. the net interaction energy of a body is the <u>sum</u> of the individual interatomic/intermolecular interactions of the constituent atoms or molecules which make up that body
- 4) A solid **continuum** exists : the summation is replaced by an integration over the volumes of the interacting bodies assuming a number density of atoms/molecules/m³, ρ
- 5) Constant material properties : ρ and A are constant over the volume of the body ↓ volume integration

$$W(D) = \iiint w(r) \bullet \rho \ dV$$

VINTERACTION POTENTIAL BETWEEN AN ATOM / MOLECULAR AND SURFACE: GEOMETRY

Geometry:

z = direction perpendicular to the sample surface

D (nm)= normal molecule-surface separation distance

x (nm) = direction parallel to sample surface

= circular ring radius (m)

A = infinitesimal cross-sectional area (m²) = dx dz

 $V = ring volume (m^3) = 2\pi x (dxdz)$

N = # of atoms within the ring = ρ (2 π x) dx dz

 ρ = number density of atoms in the material constituting the surface (atoms/m³)

r = distance from molecule to differential area

INTERACTION POTENTIAL BETWEEN AN ATOM / MOLECULAR AND SURFACE: DERIVATION

$$w(r) = -\frac{A}{r^n}(1)$$

Substitute (2) into (1): $r = \sqrt{z^2 + x^2}$ (2)

$$w(r) = -\frac{A}{\left(z^2 + x^2\right)^{n/2}} (3)$$

Net Interaction Energy:

$$W(D) = \iiint w(r) \bullet \rho \, dV$$

$$W(D) = \int_{Z=D}^{Z=\infty} \int_{x=0}^{x=\infty} \underbrace{w(r)}_{\substack{\text{potential of} \\ \text{each molecule}}} \underbrace{\rho(2\pi x) dz dx}_{\substack{\text{number of molecules}}} (4)$$

substitute $(1) \rightarrow (2)$

$$W(D) = \int_{Z=D}^{Z=\infty} \int_{x=0}^{x=\infty} -\frac{A}{\left(z^2 + x^2\right)^{n/2}} \rho(2\pi x) dz dx \quad (5)$$

INTERACTION POTENTIAL BETWEEN AN ATOM / MOLECULAR AND SURFACE: DERIVATION

Pull out constant terms:

$$W(D) = A\rho 2\pi \int_{Z=D}^{Z=\infty} dz \int_{x=0}^{x=\infty} -\frac{x}{\left(z^2 + x^2\right)^{n/2}} dx \quad (6)$$
Integral 1

$$W(D) = -A\rho 2\pi \int_{Z=D}^{Z=\infty} \frac{1}{(2-n)z^{n-2}} dz$$
 (7)

$$W(D)_{MOL-SFC} = \frac{-2\pi A\rho}{(n-2)(n-3)D^{n-3}}$$
 (8)

n = determined by the type of interaction (see slide 2), related to the range of the interaction

 $A = molecular \ level \ parameter;$ $related \ to \ strength \ of \ the \ interaction$ $\rho = atomic \ density$

INTERACTION POTENTIAL BETWEEN AN ATOM / MOLECULAR AND SURFACE: DERIVATION

$$W(D)_{MOL-SFC} = \frac{-2\pi A\rho}{(n-2)(n-3)D^{n-3}}$$

London Dispersion Interactions n = 6;

$$W(D)_{MOL-SFC} = \frac{-\pi A \rho}{6D^3}$$

$$F(D)_{MOL\text{-}SFC} = \frac{\partial W(D)}{\partial D} = \frac{-\pi A \rho}{2D^4}$$