Lecture 18:

Drug Delivery: Controlled Release Chemically-controlled Devices

3.051J/20.340J Materials for Biomedical Applications, Spring 2006

Drug Delivery System (DDS)

Controlling delivery rate and Site-specific delivery of drugs

Even though controlled release can be achieved...

Table Controlled Release DDS

Diffusion-controlled DDS

Reservoir and monolithic systems

Water penetration-controlled DDS

Osmotic and swelling-controlled systems

Chemically-controlled DDS

Biodegradable reservoir and monolithic systems

Biodegradable polymer backbones with pendant drugs

Responsive DDS

Physically- and chemically-responsive systems

Mechanical, magnetic- or ultrasound-responsive systems

Biochemically-responsive; self-regulated systems

Particulate DDS

Microparticulates

Polymer-drug conjugates

Polymeric micelle systems

Liposome systems

Ratner, et al. Biomaterials Science

Chemically-controlled DDS

Four major classes of matrix in DDS

Poly(lactic acid) and its copolymers with poly(glycolic acid)

Polyanhydrides

Poly(bis-(p-carboxyphenoxy)propane-co-sebacic anhydride)

Polyorthoesters

Polyphosphoesters

 $\begin{array}{c|c} O \\ \hline \begin{pmatrix} P \\ O \end{pmatrix} \\ \hline \\ I \\ \end{array}$ First degradation rate Hydrolytic instability, high cost⁶

Environmentally responsive systems

Environmentally responsive systems

2. pH responsive systems

Second key point in DDS

- 1. Controlling release rate
- 2. Site-specific delivery

Particulate system

Passive targeting Active targeting

Particulate should be between 10 to 200 nm.

Passive targeting of particulate

by *EPR effect*

Enhanced permeability and retention (EPR) effect

Disorganization of tumor vasculature Poor lymphatic drainage

Micro (nano) capsules and spheres 1

Capside vehicle

Immunogenic response

PEO-protein conjugates

Prolong circulation Lowering activity

Micro (nano) capsules and spheres 2

Polymeric micelles

Amiphilic block copolymer

Poly(aspartic acid)

Yokoyama et al. Cancer Res, 1991, 51, 3229.

Paclitaxel incorporating micellar nanoparticle

Micro (nano) capsules and spheres 3

Liposomes

Lipid bilayer

Small unilamellar vesicle (SUV): \sim 50 nm Large unilamellar vesicle (LUV): > 1 μ m

Multilamellar vesicle

Preparation of liposomes

1. Lipid thin film preparation

Lipids are cast on a glass surface

Addition of aqueous media Tearing off from glass

3. Ultrasound treatment

Formation of liposomes with various shapes and sizes

4. Extrusion

Reconstruction of lipid membrane Size: ~ 100 nm

Cryo-TEM image of cationic liposomes

Photo removed for copyright reasons.

Active targeting

Polymer drug conjugate

Ringsdorf's model

Ringsdorf, J Polym Sci Polymer Symp, 1975, 51, 135

PK2 (Phase I/II)

Poly(*N*-(2-hydroxypropyl)methacrylamide)

$$\begin{array}{c|cccc} CH_3 & CH_3 & CH_3 \\ \hline -CH_2 & CH_2 & CH_2 & CH_2 \\ \hline -CH_2 & CH_2 & CH$$

Doxorubicin

Duncan R and Kopecek J et al., Biochimica et Biophysuca Acta, 1983, 755, 518

Targeting residue

Saccharide determinants

Terminal residue of carbohydrate chain

Saccaride residue next to neuramic acid

Tissue distribution of ¹²³I labeled PK2

Photos removed for copyright reasons.

Third key point in DDS

- 1. Controlling release rate
- 2. Site-specific delivery
- 3. Drug formulation

Interfacial polymerization of polyamides

Emulsification of polymer and drug

Coacervation of polymer and drug

What are the drugs?

Typical anticancer drugs

High molecular weight drugs

Proteins, peptides, hormones, cytokines

DNAs and RNAs etc.

Bioactive compounds are not stable!

Summary

1. Controlling release rate

Degradable matrix

Environmentally responsive matrix, Proton sponge

2. Site-specific delivery

Passive targeting EPR effect, RES

Active targeting Targeting residue

3. Drug formulation

Denature or deactivation