Department of Materials Science and Engineering
Massachusetts Institute of Technology
3.044 Materials Processing — Spring 2013

Exam I

Wednesday, March 13, 2013

The Rules:

1)
2)
3)

4)

3)
6)
7)

9

No books allowed; no computers allowed; etc.
A simple calculator is allowed
One hand written 3x5 index card may be used as a crutch

Complete 5 out of the 6 problems. If you do more than 5 problems, I will grade the first
5 that are not crossed out.

Make sure that you READ THE QUESTIONS CAREFULLY
Reasonable assumptions are permitted, but please state them clearly.

Supplementary materials are attached to the end of the test (eqns., etc.)

WRITE YOUR NAME HERE:
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Problem #1: Why Not Start at the Beginning, with a Heat Balance Problem?

Let’s derive the heat conduction equation, but with some A
bells and whistles added. Let’s add anisotropy!

Consider a small square (2D) patch as shown; we will
work the problem in 2D and assume a unit thickness on
the Z axis, which we will call L,. Unfortunately, this
material is anisotropic and has two relevant ‘L
conductivities, ky and k, on the two axes.
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} Part A: Write down the “word” equation for the heat
balance in this system. HEAT
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/ Part B: Replace the words with mathematical symbols, but do not rearrange yet.
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- Part C: Simplify to lhe greatest extent possible, to pr0v1de a differential equation that is the
conduction equation for a 2-D anisotropic plate!
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/ Part D: Show that you can reproduce the standard, isotropic form of the 2D conduction equation

in the limiting case where k¢ =k
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Problem #2: Hot and Bothered, Cooled and Bored

‘Take a small block (L = 0.5 cm) of a refractory material like Al;O,, and consider how it cools
from a very high temperature (1500° C) while sitting in air. -

Part A) On its way from high temperatures to low, we have a competition between radiation,
convection, and conduction. At what temperatures is each of these dominant? .
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Part B) On the axes below, draw a graph showing schematically how the temperature at the
surface of the block drops with time. Explain in one sentence what you have drawn.

Part C) Now a small bore-hole is made through the center of the block
along one axis. Draw a second curve on your graph, showing how this
hole affects the cooling of the block. Again, explain in one sentence or
so what your thoughts are that led you to this drawing. y,
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Problem #3: Know When to Neglect Something

We’ve discussed in some detail when you can neglect something—now
please apply those principles to a case we all know well.

Consider heat conduction into the surface of a cylinder with a fixed surface
temperature. If we focus on the earliest stages of the process, and the
penetration of the heat is small, then we all know intuitively that we can
treat this like a 1-D Cartesian problem. Let’s try to formalize this a bit
more.

o™ FIXED
Part A) Write down the proper form of the conduction equation for this geometry, and also write
down the assumed form for a -D Cartesian problem.
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Part B) Compare the two forms of the diffusion equation, and identify the terms that need to be
neglected in order for the problem to become 1-D Cartesian
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Part C) Write down a mathematical condition under which you would consider it is OK to
neglect the cylindrical geometry in favor of the 1-D Cartesian one. If there is any assumption
here, please state it explicitly.
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Problem #4: Meet Rudiger, the Incompetent Heat Transfer Engineer

On your first day on the job at a major manufacturing concern, you are introduced to Rudiger,
the engineer in charge of designing annealing and heat treatment furnaces.

Rudiger is considering the heat treatment of a spherical anode of copper. The goal of the

exercise is to heat the entire ball to at least 300° C to relieve stresses in it. Rudiger places the
ball in a shallow pool of hot oil.

Hotoil, T=310°C

$,6=0
Rudiger reasons that in hot oil at 310° C, the ball will heat up to above 300° C. He says, “For a

spherical geometry, the steady state condition is a uniform temperature”. He allows enough time
that a steady state is achieved.

Part A:
Qualitatively explain the flaw in Rudiger’s logic.
I;art B:

Write down a proper set of equations that define this problem, including the equation we must
solve, and the boundary conditions for steady state. (Don’t solve it, just write the equations)
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Problem #5: Enlighten Me

Each of the five statements below is false (or at best, is not always true!). Make a simple but
nontrivial change (for example, deleting a few words, adding a few words, or both) to each
sentence to make it generally true. Write 1 sentence of explanation for each to back up your
changes.
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A) When heating an object by immersing it in hot gas or a hot fluid, a higher M number'is

desirable to obtain the most rapid kinetics.
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B) Cubes, spheres, and any other 3D shape of the same material and characteristic
dimensionvwill cool at the same rate given the same initial and boundary conditions.
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- Problem #6: Wherein a Block of Steel Meets a Fate Common to Lobsters

A cubic centimeter block of steel is at room temperature, and suddenly immersed in 10 cm® of
water at 100 C, -
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Part A:

e

What is the steady state for this system?
STE AL STATE 1S N L)N\FO’(C’_JN\ “TENPE%WQ*E EVE‘?_H WRELE
\ N TRE HL O 7 STEEL SYSTEM. TunT  TEMPERATURE 157

— 4 ? jﬁ Ay R —
e [100°)(00) = (2OC) (L) aa | sresots
NVERA (S (1 em?) CoT e TEMPELATL BE
] C N
Part B: "\51%5 of (ASSUMING  TOE SYSTEM 1 INSULTED
VTN ‘
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- It may be difficult to calculate just how long it would take to get to the steady state in this case. & Tswer.
Maybe instead we can calculate lower and upper bounds. Please explain how you would obtain
such bounds in this case. ASSUVME
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