3.034 - Problem set #1

Due Wednesday (Sept. 22)

Using the GPC (gel permeation chromatography) curve and calibration data shown below, calculate the number (\overline{M}_n) and weight (\overline{M}_w) average molecular weight and polydispersity of this polymer sample. Note, the y-axis numbers in a GPC experiment are proportional to n_iM_i .

V _r (retention volume)	M _i (determined from a calibration curve)
130	98,000
135	55,000
140	31,500
145	18,000
150	10,000
155	5,700
160	3,250
165	1,800

- 2) a. Draw all of the possible stereoisomers (geometric and optical only) of the following polymers and indicate which of the isomers would exhibit true optical activity.
 - b. show/draw the strongest type of intermolecular secondary bonding interaction possible for each molecule

$$\begin{cases}
N-CH_2-C_1 \\
H
\end{cases}$$

$$\begin{cases}
CH_3-CH-CH-CH \\
CH_3
\end{cases}$$

$$\begin{cases}
CH_3\\
CH_3
\end{cases}$$

$$CH_3\\
CH_3
\end{cases}$$

$$\begin{cases}
CH_3\\
CH_3
\end{cases}$$

$$CH_3\\
CH_3
\end{cases}$$

$$CH_3\\
CH_3
\end{cases}$$

$$CH_3\\
CH_3$$

$$CH_3$$

$$CH$$