
3.032 Problem Set 4

Fall 2006


Due: Start of lecture, 10/20/06


1. Strain can be coupled not only to stress but also to thermal expansion or contraction (this 
is known as thermoelastic coupling). The general constitutive equation is εi j = 1

E 
+νσi j −

ν σkkδi j + αΔT δi j, where α is the material’s thermal expansion coefficient and ΔT is the E 
change in temperature. For metals, α is on the order of 10 ppm/◦C. 

Figure 1: Bar of original length L in contact with two rigid walls. 

(a) Consider the case of a long rod of length L that is in contact with two rigid walls 
and subject to a temperature increase ΔT (Figure 1). We are interested in the lateral 
strains—that is, the strains in the 2 and 3 directions. (Assumption: the walls do not 
limit strain in these directions.) Is the 2-3 plane in a state of plane stress or plane 
strain? Derive the value of ε22 = ε33 as a function of α, ΔT , and the elastic constants. 

(b) Find the change in volume ΔV of the bar, assuming small strains (i.e., neglecting terms 
of order ε2 and smaller). Compare this change in volume to the change in volume if 
the bar were not constrained. 

(c) What is the change in volume ΔV if the Poisson’s ratio ν of the constrained bar is zero? 
If ν is 0.5? 

(d) What is the final diameter of a titanium rod of length 10 cm and original diameter 4 mm 
after a temperature increase of 250 ◦C? Use reasonable material properties for titanium. 
Would you expect the rod to buckle due to this temperature increase? 

(e) Physically, what would you do in this experiment to ensure that the assumption in (a) 
is met? 
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2. Since there are only two independent elastic constants associated with isotropic materials, 
the shear modulus G is related to the Young’s modulus E and the Poisson’s ratio ν. Your 
goal is to derive this relationship. 

(a) Consider a square region in a state of pure shear (Figure 2(a)). We expect the region to 
deform as shown in Figure 2(b). The shear modulus G is defined as the ratio of shear 
stress τ to the angular deformation γ (assuming that γ � 1). By what name is the 
variable γ known? 

Figure 2: (a) Square region under a stress state of pure shear; (b) Deformed shape. 

(b) Calculate the post-deformation distance between points A and B (or AB) in terms of γ 
and �. Feel free to use the small-angle approximations sin γ ≈ γ and cos γ ≈ 1. 

(c) Transform the stress state into the principal stress state by a method of your choosing. 
Plot the magnitudes and directions of the principal stresses on the original square region 
(Figure 2). Define a new set of axes, i� and j�, corresponding to the directions of the 
principal stresses. 

(d) Express the strain εi�j� and also the post-deformation distance between points A and B 
(AB) as a function of the principal stresses. By equating your two expressions for AB, 
express G in terms of E and ν. 

3. Listed below are force vs.	 strain data from tensile tests on one elemental polycrystalline 
metal, one polycrystalline metallic alloy, and one ceramic. 

Force(N) εA εB εC 

0 0 0 0 
500 0.00019 0.00017 0.00006 

1000 0.00038 0.00035 0.00013 
1500 0.00050 0.00054 0.00016 
2000 fracture 0.00072 0.00025 
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(a) Graph these data and find the Young’s elastic modulus E of each material, assuming an 
initial length of 16 cm and an initial cross-sectional area of 0.4 cm2 for all samples. 

(b) Which sample (A, B, or C) is likely to be the ceramic? Why? 

(c) What is a possible composition of each metallic sample? 

4. Materials (single crystals of metals and ceramics, composites, and even types of polymers 
and proteins) have symmetry that reduces the number of independent values in fourth rank 
tensors that modulate second rank tensors. You will prove this and consider the number 
of independent elastic constants in the context of elastic constants for cubic and isotropic 
materials. 

(a) δi j is the Kronecker delta and = 1 (i = j) or = 0 (i � j). We can write this as a matrix 
(not a tensor!), such that δi j = 

1 0 0 
0 1 0 
0 0 1 

, 

where ai j = −δi j and ai j is the direction cosine matrix, as always. We can use this fact 
to write down some pretty obvious truths, e.g., 

δi jσ jl = σil (1) 

because, of course, σ11 = 1 ∗ σ11 + 0 ∗ σ12 + 0 ∗ σ13 = σ11. For this reason, the matrix 
δi j is also called the substitution matrix. Fascinating. Use this fact to prove something 
useful about the stiffness tensor Ci jkl: 

Ci jkl = δimδ jnδkoδlpCmnop (2) 

(b) This means that a component of the stiffness and compliance tensors is unchanged in 
its value if the reference axes are rotated about a center of symmetry of the material. 
For example, a cubic materials has symmetry in the [100], [010], and [001] directions 
such that, in the contracted two-suffix notation of the fourth rank tensor Ci jkl, 

C11 = C22 = C33; C12 = C23 = C31; C44 = C55 = C66. (3) 

To reduce from cubic symmetry (3 independent elastic constants) to isotropic symmetry 
(2 independent elastic constants), we can consider a rotation of the reference axes in a 
cubic crystal under uniaxial tensile strain (�11 = �11; all other strains = 0). Express the 
normal stresses σi j in terms of �i j and Ci jkl, and then rewrite this expressing C in the 
contracted two-suffix notation. 

(c) Consider a 45o CCW in-plane rotation from this old axis set (1, 2, 3) to a new axis set 
(1’, 2’, 3’) about the 3-axis. Express the direction cosine matrix of this transformation 
ai j. 
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(d) Express the shear strain component �� in terms of ai j and the old coordinate system 12 
strains. 

(e) Now express the shear stress σ�12 in terms of the old coordinate system stresses, and 
then in terms of the old axial strains that define those stresses. 

(f) From (d) and (e) and the fact that you have proved that certain Ci j have the same value 
independent of rotation for materials of cubic symmetry, equate σ�12 with �� in terms 12 
of C11 and C12. 

(g) Now, for an isotropic material, you know that shear stress is proportional to (engineer­
ing and tensorial) shear strain via the shear modulus. Equate σ�12 with �� in terms of 12 
C44 on this basis. 

(h) Finally, compare (f) and (g) to prove that three independent constants in a cubic material 
reduces to two independent constants for an isotropic material, and give the mathemat­
ical relationship among these three independent elastic constants C11, C12, and C44 for 
this isotropic approximation. 

5. Most metals are elastically anisotropic, meaning that the measured Young’s elastic modulus 
Ei jk depends on the direction with respect to the crystal structure along which load is applied. 
This can be expressed in terms of the compliance matrix S i j as: 

1
1/Ei jk = S 11 − 2(S 11 − S 12 − S 44)(ai1

2aj2
2 + aj2

2ak3
2 + ai1

2ak3
2) (4)
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where this time ai j is the direction cosine matrix between the unit cell crystallographic di­
rections [100], [110], and [111]: 

. ai1 aj2 ak3 

[100] 1 0 
[110] 

√
2/2 

√
2/2 

0 
0 

[111] 1/ 
√

3 1/ 
√

3 1/ 
√
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so one can compute E110 and compare it to E111, for example. If all Ei jk are the same, that 
material is elastically isotropic. Referring to Table 2.4 (Meyers and Chawla) for S i j, compute 
E100, E110, andE111 as well as the Zener anisotropic elastic constants A for the following pairs 
of materials: 

(a) Ag and Au, two FCC group 11 noble metals; 

(b) W and Mo, two BCC group 6B heavy metals. 

(c) Why do you think these differ within (a) and (b) [i.e., same crystal class and group]; 
and among (a) and (b)? 
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