
3.032 Problem Set 3

Fall 2006


Due: Start of lecture, 9/29/06


1. In PS2-4, you considered a femur under a torsional load that induced a spiral fracture, ap­
proximating the load as pure torsion. 

Figure 1: Femur under pure torsional loading T . 

(a) Draw a representative in-plane element from the outermost surface of the femur diaph­
ysis. The femur is idealized as an annular cylinder of uniform diameter subjected to a 
pure torque T (Figure 1). Indicate all the normal and shear stresses σi j acting on that 
material volume element, expressed only as a function of T . 

(b) Construct Mohr’s circle of stress to identify the average normal stress σavg in the bone. 

(c) Draw the orientation of the representative material element (indicate magnitude of θps) 
and give the magnitudes of the principal normal stresses σ1 and σ2, assuming a critical 
torsional load F of 67 N for a moment arm of 2 m. 

(d) Compare/contrast this finding with what is observed for the principal stress state and 
maximum shear state for the same bone subjected to uniaxial compression with a mag­
nitude σ11 = σ1 = 60 MPa. 

2. Thin films used in microelectronics can develop considerable internal strain when they are 
deposited onto a substrate of a different material. The two materials may have different unit 
cell lattice parameters and/or may have different coefficients of thermal expansion, and the 
thin film is forced to take on the lateral dimensions of the substrate to which it is adhered. 
This strain can lead to substrate-film curvature (Figure 2). The midplane of such thin films 
is often approximated as being in a state of in-plane normal strain in cylindrical coordinates: 

�rθ = 0; �rr = �θθ = �o − κz 

where �o is an isotropic extension of the substrate (and the film), κ is the curvature of the 
film/substrate, and z is the distance from the film neutral axis (its midplane). 
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Figure 2: Top: Substrate before deposition; Bottom: Substrate and thin film after deposition (the 
actual curvature may be in the opposite direction depending on the mismatch between lattice pa­
rameters and thermal expansion coefficients). 

(a) In a scientific programming language of your choice, write a program that can be used 
to determine the normal strain �x� x� and engineering shear strain �x�y� on the (thin film 
material) plane oriented at an angle θ with respect to your original coordinate system 
(x, y). Your program must report: 

i. �x� x� and engineering shear strain �x�y� for a given θ 
ii. principal strains �1 and �2 and the material volume element orientation θpe 

iii. maximum in-plane shear strain	 �x�y�,max and the corresponding material volume 
element orientation θpe,max 

iv. average normal strain �avg 

Note: Mathematica, Matlab, Maple, C++, and Fortran90 are excellent choices to build 
this program. Practice with Mathematica will benefit you in future lab experiment 
analyses, so here’s a good excuse to brush up (available on However, a brute-
force execution in Excel is acceptable as a last resort. In all cases, you must provide 
the program and indicate the embedded equations with your problem set solution. 

(b) Assume all the strain at the midplane of a Ge film deposited on a Si substrate comes 
from a mismatch of the unit cell lattice parameters a of those two materials. Compute 
that strain. 

(c) Is the film in a state of tensile or compressive strain, and will the film/substrate system 
show positive (smile) or negative (frown) curvature? 

(d) Assume the film is 500 nm in thickness and that you have measured the radius of curva­
ture ρ of the film/substrate system as 10 km, the resolution of laser-based instruments 
used to measure wafer curvature. What is the in-plane normal strain �rr = �θθ? 

(e) This strain state is the principal strain state. How do you know this? 
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___________________________________________ 

(f) Assume a Cartesian coordinate system is a fair approximation in the plane strain state 
of the film (i.e., �rr = �θθ = �1 = �2). Use your program to determine the orientation and 
magnitude of maximum in-plane shear strain in the Ge film. 

(g) If the principal strain state of a thicker piece of Ge were not in an equibiaxial strain state 
as described above, but instead a random biaxial strain state (e.g., 2�1 = �2; �3 = 0), use 
Mohr’s circle to determine the magnitude of maximum shear strain and the plane of 
the film on which that shear strain would be (1–2, 1–3, or 2–3). You can assume the 
3-direction to be through the film thickness. 

3. A beam of 2000 mm2 cross-sectional area is composed of two pieces of wood glued together 
along a plane at an angle θ with the beam axis (Figure 3). It has been found from previ­
ous experiments that the joint will fail at 20 MPa and 10 MPa normal and shear stresses, 
respectively, and the wood at 56 MPa and 28 MPa normal and shear stresses, respectively. 
Determine the maximum allowable axial load that the bar can carry with a safety factor of 
two and the corresponding value of the angle θ. 

Figure 3: Wood pieces connected by glued joint. 

4. In 1654, the German scientist Otto von Guericke performed an experiment for Emperor 
Ferdinand III to demonstrate the nature of atmospheric pressure. Guernicke connected two 
copper bowls with an outer diameter D of 14 in, pumped out the air between them, and tried 
to pull them apart with two teams of eight horses each (Figure 4). The horses were unable 
to separate the bowls. 

Image removed due to copyright restrictions. Please see:
http://chem.ch.huji.ac.il/history/guericke_magdenburg_experiment.jpg 

Figure 4: Otto von Guericke’s experiment with two connected copper bowls, a vacuum pump, and 
two teams of horses 
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(a) Assuming that Guernicke’s pump was capable of removing 75% of the air from the as­
sembly and idealizing the connected bowls as a sphere with a wall thickness of 0.4 cm, 
what was the maximum normal stress in the copper bowls before the horses started 
pulling? 

(b) Using a failure stress σF for copper in compression of 370 MPa, how thin in theory 
could the copper bowls be made without failure? If this value seems impractical, ex­
plain why using the terminology and concepts of 3.032. 

(c) Assume that the bowls are not hemispheres but rather two identical shells of revolution 
of y = (7 in) sin [xπ/(14 in)] for x between 0 and 14 inches with axis of revolution x = 7 
inches. The bowls are sealed at the joint with epoxy (Figure 5). The wall thickness is 
0.4 cm and the interior is 75% evacuated as before. What is the actual shape of the 
stress distribution σ(x), and what is its average value? 

Figure 5: Epoxy joint between two shells of revolution.
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