Fourier Series: Decomposition into periodic functions.

I. Defining projection in function space, one way is as an integral over a domain.

(C;i:) - fD a(x)* - b(x)dx = (a|b)

D: — oo < x < o General functions

D: —m < x < m Periodic functions

D: —p < x < q General restricted domain

The projection is only valid over the domain you integrate

Normalized function: {ala) = |a|®* = 1

Orthogonal functions: {a|b) = 0
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. Periodic functions: Forier Series, as some a portion of a periodic or aperiodic function is periodic.
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Now break that portion into a sum of periodic functions.




Why can we do this (easily)?
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Orthonormal basis! (Maybe of some differential eq...)

Another way to express:
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lll. Fourier Series Proper
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Note that the complex form and the sine/cosine form are equivalent as for each value of i, the sine is a
difference and the cosine is a sum of two exponentials. We like using the sines and cosines because they
are real functions while the exponential ones are complex and have complex coefficients. If you plug a
real function into the complex Fourier series, some sum of sines and cosines will pop out at the end.
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Since x is real and odd, our complex series resulted in a sum of sines with real coefficients.
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IV. Fourier transform
What happens to our coefficient plot as we increase L?

The spaces get smaller and smaller until...
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Now the coefficients are a continuous variable that tell us about the frequency breakdown of a given
function.

Let’s look at some examples:

The constant function doesn’t oscillate at all, so is just a delta function at the origin, by converse a sharp
pulse (delta function in position), has all of the frequencies.
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A sine or cosine, due to Euler’s formula, are delta functions at plus/minus the frequency
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In general the wider a pulse is in real space, the sharper it will be in frequency space
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