I. Vectors, Vector Addition, Vector Notations
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Some Vector Notations

Vector Matrix Unit Vector
e M é
e; M;; é;
le) M le)

II. Vector “Multiplication”
e=[la=[

Dot product is as close to multiplication as vectors have
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Normalization: Dot product of something with itself is equivalent to its length/magnitude
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lIl. Projection interpretation of dot product
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The dot product may be thought of as how much one vector and another are related.



IV. Basis

X and ¥ are orthogonal or normal basis that are complete i.e. can map any vector in 2D.
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Descartes’ basis is complete, but not orthogonal.
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% and x are neither normal or complete
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V. Matrixes are operations

Identity: returns any vector multiplied by it (the “1” of the vector-space)
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x Stretch: doubles the x-value of any vector
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Rotation: Rotates any vector about the origin by angle ©
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Projection: A very important matrix, gives the basis vector weighted by the projection of the vector its
applied on

Psé=(a-&)a=aa



VI. Eigenvalues, Eigenvectors

If & is an eigenvector of M, multiplying Me is the same as multiplying €, where € is the constant
eigenvalue of the eigenvector.

An n x n matrix can have no more than n eigenvalues. If it has n non-zero values, then it has a complete
eigenbasis.

For example all vectors are eigenvalues of the identity matrix. This is because the | matrix has n
eigenvalues that are all 1, so any n distinct, independent vectors could be its eigenbasis. For
conveniences, we choose an orthogonal basis whenever possible.

Let’s try a different matrix.
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To find the values and vectors we introduce the determinant
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Conveniently, det(M) =[] ¢; ~ifanye =0, det(M) =0
So:
Mél = 8161

(M—Sll)él = 0
So|M—¢gI|=0
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The eigenvalues are the roots of this characteristic equation
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Find vectors by examination
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VIl. Some matrix operations

Inverse
MM =1
Transpose
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Hermitian transpose: VERY IMPORTANT, whenever we transpose a complex vector, we need to use the
Hermitian transpose, or else we will not get real lengths for vectors dotted with themselves

Mt — MH — (MT)*
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Hermitian and symmetric matrix

. fa b .. Ja+bi c+id
Symmetric [c d] Hermitian c—id e+if
M=MT H'=H

Hermitian matrix will always have real eigenvalues. Hermitian and symmetric matrixes have normal
eigenvectors (but not necessarily complete). Projection matrixes are symmetric but only have 1 (and 0)
as an eigenvalue with the vector of the projection being the eigenvector.

VIIl. Commutation

[A,B] = AB-BA, AB-BA only if they share eigenvectors.



IX. Spectral theorem of Symmetric or Hermitian matrixes.

M = Z gipéi
i

Which means that Ma is equivalent to weighting the eigenvalues of M by the projection of a on the
corresponding vector. This will be important to quantum...
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