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1. Electronic Band Diagram Review 
Considering 1D crystals with periodic potentials of the form: 
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Here      

 
    where n is an integer, a is the crystal lattice constant, and   is the reciprocal space 

lattice constant. 
The Schrodinger equation for these systems has a general solution of the form: 
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Upon substitution of this solution into Schrodinger’s equation, the following Central Equation is found: 
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This is an eigenvalue/eigenvector equation where the eigenvalues are given by E and the eigenvectors 
by the coefficients Ck. 
By rewriting the above expression as a matrix equation, one can computationally solve for the energy 
eigenvalues for given values of k and produce a band diagram. 
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The steps to solving this equation for just the energy eigenvalues is as follows: 
1. Set values of   equal to values of coefficients of the periodic potential of interest. 
2. Truncate the infinite matrix to an     matrix approximation suitable for the number of energy 
bands that is required for the problem to be investigated.  If N is odd, set the center term to the Ck matrix 
coefficient.  If N is even, an asymmetry will be introduced in the top band depending on whether the Ck 
matrix coefficient is placed to the left diagonal of the matrix center or the right diagonal of the matrix 
center.  This asymmetry can be avoided by only using odd matrices or by solving both even matrices 
and superimposing the highest band energy solutions. 
3. Set k equal to a value in the first Brillioun zone and use a numerical method to evaluate the 
eigenvalues.  Since the Central Matrix equation is Hermitian, these eigenvalues will all be real.  In order 
from least to greatest they represent the bottom N energies in the band diagram at the chosen value of k. 
4. Plot the N energies obtained in step 3 at the chosen value of k. 
5. Repeat steps 3-4 until enough values of k have been plotted within the first Brillioun zone to produce 
the band diagram for the first N bands. 
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Once the energy eigenvalues are known, one can in principle then attempt to find the Ck coefficients of 
the wave function.  However, unless one is really interested in the exact form of the wave function 
solution, this is usually unnecessary as the energy band diagram tells us the general physics of the 
electron in the crystal lattice. 

2. Spin Review 
In addition to classical observables such as energy E, momentum p, angular momentum l, etc. electrons 
and other wave-particles have a property known as spin.  Originally named spin because of the 
correspondence to classical angular momentum, there exists no real classical explanation of the property 
as all attempts to use classical theory to predict the measured values of the spin of particles has resulted 
in incorrect values, only invoking quantum relativistic mechanics can one accurately predict the value of 
spin for a given wave-particle which is beyond the scope of this course.  The best practical way to think 
of spin is as an intrinsic property of the particle such as mass or charge. 
Regardless, spin is extremely important in calculating the electromagnetic properties of materials.  This 
is because electrons exhibit a spin of   

 
 which makes them Fermions.  Fermions obey Fermi-Dirac 

statistics and the Pauli exclusion principle which means no two Fermions can occupy the same quantum 
state due to their total wave function being antisymmetric.  This means for example that in the hydrogen 
atom, a given electron has 4 degrees of freedom that when determined define which orbitals it will 
occupy.  3 of these degrees of freedom are of course the energy represented by quantum number n, 
orbital angular momentum l, and magnetic angular momentum m.  Coupled with the spin quantum 
number s a given set of the first 3 quantum numbers can only have 2 states of the spin quantum number 
and thus each orbital can have up to 2 electrons each with spin   

 
 and   

 
.  

Other particles have different integer or half-integer values of spin.  Integer value spin particles obey 
Bose-Einstein statistics rather than Fermi-Dirac statistics and can have any number of such particles in a 
given state by virtue of their total wave function being symmetric. 
Examples of Fermions and Bosons are listed below with their spin magnitudes: 

Spin Magnitude Wave-Particle Type Example Wave-Particles 
0 Boson Alpha Particles, Higgs Boson (If it exists) 
 

 
  Fermion Electron, Charm Quark, Tau Lepton 

1 Boson Photon, Gluon 
 

 
 Fermion    

     Nucleus 
2 Boson Graviton (If it exists) 

Since electrons are spin ½ if there are N total energy states that can be occupied in a given band, then 2N 

electrons can fill those states as a consequence of their Fermion behavior. 
3. Density of States 

The density of states  ( ) represents the number of states per unit energy and volume in a given system.  
To calculate the general density of states, first one calculates the total number of states N as a function of 
energy E and then normalizes by the generalized volume Ld of the system in the dimension d of the 
system.  Then, this volumetric density of states n is normalized by the energy by taking the derivative 
with respect to E to obtain the final expression for  ( ). 
E.g. Density of States in 2D 
Consider a piece of Graphene with total area L2.  The crystal lattice is 2D, thus its dimension is d = 2.  
What is the density of states in such a system? 
 
First we calculate the total number of states N in terms of the reciprocal space vector k and dimension L. 
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Here the factor of 2 is a result of the electrons being Fermions. 
Next we normalize by the total area L2
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We now use the relation of k to E to express n as a function of E. 

  
    

  
   

  

   
 

Finally, using  ( )    
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Amazing, for a 2D system, the density of states is a constant.  This means that the charge carrier density 
for a given band for T = 0 K is just proportional to the difference in energy of maximum value in the 
band and the minimum value of the band. 

4. Fermi-Dirac Distribution 
The probability of finding an electron at a given energy value at a given temperature T is given by the 
Fermi-Dirac distribution function: 

 ( )  
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Here    is Boltzmann’s constant and is equal to             
 

 or             
 

. 
  here is the chemical potential of the electron which corresponds to the Fermi energy F. 
If   occurs in the conduction band, the material will be a metal. 
If   occurs between the conduction band and valence band, the material will be an insulator if the band 
gap is wide enough that at high temperatures the Fermi-Dirac distribution still does not overlaps into the 
conduction band. 
If   occurs between the conduction band and valence band, the material will be a semiconductor if the 
band gap is small enough that at room temperatures the Fermi-Dirac distribution overlaps into the 
conduction band. 
To calculate the Fermi energy, we set density per volume of charge carriers equal to the known value 
and solve for F. 
E.g. 2D Fermi-Energy 
We previously found the 2D density of states per unit volume 

  
  

  
 

If this corresponds to the Fermi level, then we find: 
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Here    is the Fermi wave number and F the Fermi energy in 2D. 
 
Other variables of use include the Fermi temperature TF and Fermi momentum pF and Fermi velocity vF. 
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   √            
Note that these variables have no real physical meaning other than expressing the Fermi energy in terms 
of other quantities for qualitative comparison or simplification of certain equations. 
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The number of charge carriers in a band can be calculated using the Fermi-Dirac distribution as follows: 

  ∫  ( ) ( )  
 

 

 

Here Et and Eb are the top and bottom energy of the band respectively.  The density of states is 
determined by the energy levels in the band and the dimensionality of the material as derived before, and 
the Fermi-Dirac distribution is taken at a given temperature T. 
Similarly, we can calculate the total potential energy U as follows: 
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In the valence band, this corresponds to the following integral. 

  ∫
 

 
(   )
     

(
  

  
)

 
  

 
 

   
   

 

 

 

E.g. Heat Capacity 
The electronic contribution to the heat capacity can be calculated using the above expression for U and 
the relationship: 
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Since only the Fermi-Dirac distribution depends upon T.  One can show that the term   ( )
  

 is only large 
near the Fermi energy and to good approximation we can take  ( ) outside of the integral evaluating it 
at the Fermi energy. 
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The density of states evaluated at the Fermi energy is just a constant for a given dimensional material, thus this 
shows the electronic contribution to the heat capacity is proportional to T. 
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This is very different from the classical ideal gas where  
 

   
 

 
    

which was independent of temperature. 
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