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1.  Schr ̈dinger: Eigenfunction Problems & Operator Properties 

 
In quantum mechanics, the Hamiltonian is an operator in Schr ̈dinger’s equation: 

 ̂    
  
  

 
If  (   )   ( ) ( ) which is true of the systems we will currently consider, 
the equation reduces to simpler time-independent Schr ̈dinger equation using 
separation of variables: 

 ̂     
In this form, the time-dependent part of the wave function is a simple exponential 
relationship: 

 ( )     
 

   
  

Going back to the time-independent Schr ̈dinger equation, if we consider  ̂ as an 
operator acting upon the function ψ, then it follows that E is an eigenvalue of the 
operator  ̂ with eigenfunction ψ.  This is analogous to the eigenvalue and 
eigenvector problems in the vector spaces considered before.  In fact, the whole of 
quantum mechanics can be reformulated from the continuous functional 
representation of Schr ̈dinger to a Hilbert vector space formulism that Heisenberg 
first used where the wave functions become infinite dimensional wave vectors 
and the Hamiltonian an infinite dimensional matrix. 
 
In special cases where there are only a finite possible number of states for a 
system such as the 2 spin states for a single fermion, then these wave vectors can 
be represented as a finite vector.  Thus the eigenvectors of the Pauli spin matrices 
discussed previously actually are the basis wave vectors for the spin state of a 
single fermion. 
 
For now, we will focus on systems using the Schr ̈dinger formulism.  To solve 
eigenvalue problems of this form results in solving differential equations.  The 
general form of the Hamiltonian for 1D systems is: 

 ̂  
 ̂ 

  
  ̂( ̂) 

From classical mechanics, we recognize this as the total energy of the system.  
However, the hat designation above the momentum and potential energy now 
implies that these values are quantum operators.  Any physical observable in 
quantum mechanics is described by an operator.  The eigenvalues of that 
observable on its eigenfunctions are then the measurable values of the state of the 
system with the eigenfunctions containing the probabilities of observing that 
value.  These operators are all Hermitian if they correspond to a physical quantity. 
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The following are the basic operators of 1D quantum mechanics: 
Position 
 ̂    

Momentum 

 ̂   
   

  
 

Using these and taking the classical observable analogs, a quantum operator can 
be constructed. 
 
e.g. 1: Uniform Electric Field Hamiltonian 
Write the classical form of the Hamiltonian for a charged particle with charge q 
and mass m in a uniform electric field   in the positive x direction.  Then convert 
this to a quantum operator. 
 
The potential energy of the particle is given as 

 ( )       
Thus the classical Hamiltonian is simply: 

  
  

  
     

Converting this to a quantum operator: 

 ̂  
 ̂ 

  
    ̂  

 

  
( 

   

  
)
 

     
 

  
( 

   

  
)
 

     

  ̂   
  

  

  

   
     

e.g. 2: What are the eigenfunctions for   ̂if we call its eigenvalues   . 
 ̂      

 
    

  
     

  

 
      

  (
 ( )

  
)      

 ( )     
    

are the eigenfunctions of  ̂. 
2. Piecewise Function/Continuity Review 

Continuous piecewise functions are defined as follows: 

 ( )  {

  ( )     

  ( )     
 

  ( )    

  (      
         

 
       )

 

Here we note that the following continuity conditions must be in place for these 
functions to be piecewise continuous: 

  (  )       (  ) 
   (  )

  
 

      (  )
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Wave functions must obey the same boundary conditions.  Note however that the 
potential function V(x) does not have to be piecewise continuous, just the wave 
function.  There are many problems of interest where V(x) is a piecewise function 
and not necessarily continuous such as the particle in a 1D box and barrier and 
potential well problems. 
 
e.g. 3: Particle in a box – symmetric about x-axis 

 
Consider the above system with the piecewise potential energy function V(x) for 
an electron inside the infinite potential well. 

 ( )  {
 
 
     

  (    
 

 
)  (

 

 
  )

  [ 
 

 
 
 

 
]

 

The wave function is 0 outside the middle region since there is 0 probability of 
finding the electron in the infinite potential regions. 

 
We write Schr ̈dinger’s equation for the middle region. 

 ̂     

 ̂ 

  
     (

(   
 
  

)
 

  
)     

 
      

   

  
    

The general solution of this equation is: 
 ( )               

with    
   

  
 

The boundary conditions (BCs) for this problem are: 

 ( 
 

 
)         (

 

 
)    

The first BC gives: 
 

3



3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 
Recitation 3 Notes 
 

  
   
     

   
    

The second BC gives: 

   
   
    

   
    

Adding these two equations: 

 ( 
   
    

   
 )   ( 

   
    

   
 )    

or 

     
  

 
      

  

 
   

 (   )    
  

 
   

Subtracting the second equation from the first equation: 

 ( 
   
    

   
 )   ( 

   
    

   
 )    

or 

      
  

 
       

  

 
   

  (   )    
  

 
   

Thus these equations must simultaneously be true: 

 (   )    
  

 
   

 (   )    
  

 
   

If A = B :  

   
  

 
                     

If A = -B :  

   
  

 
                        

Thus the solution to the problem is: 

  ( )  {
    (  

   
     

   
 )

     (  
   
     

   
 )

 
       (

   

 
)      

        (
   

 
)       

 

Such that: 
                             

The constants C and D are found by the normalization condition for the total 
probability of finding the particle: 

  ∫   
 ( )  ( )

 
 

 
 
 

   

{
  
 

  
 

∫     
     (

   

 
)        √

 

 

 
 

 
 
 

∫      
     (

   

 
)          √
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Therefore: 

  ( )  

{
 
 

 
 
√

 

 
   (

   

 
)      

√
 

 
   (

   

 
)       

 

The energies of the system are quantized such that: 

   
    

  
   

  (
  
 

 )
 

  
 

      

    
 

    

    
 

 
e.g. 4: Scattering off a step potential. 
Consider the following piecewise potential energy function V(x) for an electron 
traveling incident from the left side with total energy E > V0. 
 

 ( )  {
 
  

     
  (    )
      )

 

 

 
Find the general form of the wave functions for this potential energy and the 
transmission and reflections coefficients for the incident electron, R and T. 

 
First we write Schr ̈dinger’s equation in the two regions. 

 ̂     

(
 ̂ 

  
  )     (

(   
 
  

)
 

  
  )     

In region I: 
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V = 0 

 
       

   

  
     

In region II: 
V = V0 

 
        

   

  
            

 

Since the wave function must be piecewise continuous, we have the following 
boundary conditions (BCs). 
 
BC are   ( )     ( )     

   

  
( )  

    

  
( )  

 
Now, to solve these we write the general solutions for the wave function in 
each region and apply boundary conditions. 
 
Let    

   

   and    
  (    )

   
In region I: 

     
    

   
                                     ( )               

In region II: 

      
     

   
                                      ( )

              
Since the electron is incident from the left, there can never be a rightward 
propagating wave from the right side. 

       ( )        
 

The coefficients R and T  are simply related to the coefficients A, B¸and D such 
that A corresponds to the incident electron, B the reflected electron, and D any 

transmission electron. 
The exact correspondence comes from the conservation of the flux of electrons 

from the left equaling the flux of the electrons on the right. 
The probability current/flux is simply the probability amplitudes times the 

velocity of the electron. 

  
 

 
 

  

 
 

      
We have 3 probability currents/fluxes, incident, reflected, and transmitted. 
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Assuming I = 1, we can normalize this current/flux equation by      and obtain 
the following relations for R and T. 

We can thus write   
   

   
       

   

   

 

 
   

 
Now, using the boundary conditions: 

  ( )     ( )                            
   

  
( )  

    

  
( )    (            )              

   

  
  

Subtracting the second equation from the 1st times   
  

 we can find R: 

(  
  

  
)  (  

  

  
)    

 

 
  

(  
  
  )

(  
  
  )

 
     

     
 

   

   
 

  
   

   
 (

   

   
)
 

 

  (
   

   
)

 

 

  

  (    )
    

  √ (    )

   
   
  

  (    )
    

  √ (    )

   
   
  

 

   
(    )  √ (    )   

(    )  √ (    )   
 

 
Adding the two equations we can find T: 

   (  
  

  
)  

 

 
 

 

(  
  
  

)
 

   

(     )
 

  

   
 

 

  
   

   

 

 
 (

  

   
)

  

 
 (

   

(   ) 
) 

  

(

 
 

  √ (    )

  

  (    )
    

  √ (    )

   
   
  )

  

   
 √ (    )

(    )  √ (    )   
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Note that classically a particle would always reflect, but here there is a finite 
probability of transmission. 
 
 
 

 
Plotting R (red) and T (blue) versus E.  

 
For the case E < V0, iρ becomes real, so let iρ = α. 

 

 
 

    

    
 

  
   

   
 (

    

    
) (

    

    
)  

     

     
   

For this case, the entire wave is reflected, analogous to the classical case.  The 
wave function in region II is a decaying exponential, which is not classical.  This 
implies even though electrons are reflected if their energy is lower than the barrier 
potential, they have a finite probability of penetrating the step barrier before being 

reflected. 
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