
 
 

 

 

 

 

 

 

 

   

 

   

   

   

 

 

  

  

Lecture 7  
Quantum Mechanical Measurements.  

Symmetries, conserved quantities, and the labeling of states  

Today’s Program: 

1. Expectation values 

2. Finding the momentum eigenfunctions and the dispersion relations for free particle.  

3. Commutator and observables that commute 

4. Symmetries and conserved quantities – labeling of states  

Questions you will by able to answer by the end of today’s lecture 

1. What is the significance of commuting and non-commuting operators? 

2. How are constants of motion used to label states?  

3. What is the connection between symmetries and constant of motion? 

4. What are the properties of “conservative systems”? 

5. What is the dispersion relation for a free particle, why are E and k used as labels? 

References: 

1. Introductory Quantum and Statistical Mechanics, Hagelstein, Senturia, Orlando. 

2. Principles of Quantum Mechanics, Shankar. 
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Now let’s find out what happens when we try to take a measurement of a physical quantity. 


Consider a system whose state is characterized at a given time by the wavefunction r ,t . We 

want to predict the result of a measurement at this time of a physical quantity a associated with 

the observable Â . The prediction of a possible outcome will be in terms of probabilities. We will 
now give a set of rules that will allow us to predict the probability of obtaining any eigenvalue of 

Â  in a measurement. 

Let us first assume that the spectrum of Â  is entirely discrete. If all the eigenvalues a
n
 of A are 

non-degenerate there is associated with each of them a unique eigenvector un 
x :  

ˆ Au x   a u x      n n n 

Since A is Hermitian the set of n   is a complete basis for the wavefunction space. That u x  

means that any wave function can be represented as a linear combination of n   :u x  

 x C u x    n n  
n  

Where the coefficients of the expansion are just as they are in the geometrical analogy 
projections of the function onto the  direction given by the inner products between the  un 

function   and the normalized basis function :un 

C  u  
n n 

As you already know what the definition of an inner product between vectors is we now define 
the inner product between functions. 

An inner product between two functions was  

u x  x u x  x        *    dx 

Remind ourselves of the geometrical interpretation (in 2D for simplicity). For two vectors , u 
n 

the inner product is in a number (which can be complex), which is the projection of one vector 

onto the other vector. u   C 

How do we represent a vector   in a particular basis?  

Choose a particular set of vectors, which span the vector space u
1
, u

2
,.... Usually we choose  

basis set to be orthonormal (i.e. the basis vectors are of length 1 and are orthogonal to each  
other). Then we find the projection of  onto the direction of each basis vector.  

u   C
11 

u   C
22 
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Write the original function as a linear combination of the basis vector:   C u C u
2
.

1 1 2

N 

In general:  C
i
u

i 
. 

i1 

Finding the eigenvectors and eigenvalues of operators, discuss the geometrical interpretation of 
eigenvectors and eigenvalues – scaling. 

Fourth Postulate (discrete non-degenerate): When the physical quantity a is measured on a 

system in the normalized state t the probability P a n  of obtaining the non-degenerate  
eigenvalue an of the corresponding observable is: 

2 2 
2 2

P a    u   

C* u * x

 
u x dx  C*  u * xu x dx  C n n s s n s s n n

 s  s 

where n   is the normalized eigenvector of A associated with the eigenvalue an .u x  

Expectation values:  
What is the average value we expect to get from a series of experiments?  

For quantum mechanical system described by a wavefunction  x, t  the average value of a 

physical quantity described by an observable Â  is: 

ˆÂ  x,t A  x,t     * ˆ xx A    dx 

At any given moment t0  we can represent  x, t0   as a linear combination of eigenfunctions of 

observable Â :  Cnun x
n 
x, t0    , where C u  x,t

0    un 
*  x x,t

0  dx. 
n 

n 

Substituting this into the equation above we get: 

* * 
 

ˆÂ  x,t  x,t     * ˆ x  C u x  ˆ u  x A    dx     A C  x dx A 
n n n n 

n  n  
   

* * ˆ * * C u x  C Au x dx  C u x  C a u x dx              n n n n n n n n n 
n  n  n  n  

2
 C*C a u * x x  C a   u    dx n s s n s n n  

n s n  

Let’s consider an example: Particle flying in free space. 
We have previously approximated particles in free space with plane waves but in reality they are  
more like a linear superposition of multiple plane waves.  
Let’s consider a particle described by a wavefunction:   

1 ik0xi0t  1 2ik0x4i0t  1 ik0 xi0tx, t  e e e
2 2 2 
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What is the average momentum of this particle?  
Using a definition of the expectation value we can write:  

 

p̂  x,t p̂ x,t   * x,t p̂x,t dx  
 

 1 ik0xi0t  1 2ik0x4i0t  1 ik0xi0t 

 


1 ik0xi0t  1 2ik0x4i0t  1 ik0xi0t 

 
   e e e  i e e e dx  

2 2 2  x 2 2 2  
   1 ik0xi0t  1 2ik0x4i0t  1 ik0xi0t 1 ik0xi0t  1 2ik0x4i0t  1 ik0xi0t   e e e  k0

e 2k
0
e k

0
e dx  

2 2 2 2 2 2  
1 1 1 k  2k  k 

0 0 04 4 2 
 1 ik0x3i0t  1 2ik0x  1 ik0x3i0t  1 3ik0x3i0t  1 2ik0x  1 3ik0x3i0t 

 
   2k

0
e k

0
e k

0
e k

0
e k

0
e 2k

0
e dx  

4 2 2  4 2 2  2 2 2 2   
1 1 1 1 k  2k  k  k

0 0 0 04 4 2 4 

1
So on average the momentum is equal to: k04 
What is the probability for this particle to be flying left (in the opposite direction of x axis)? 
Here we need to find the probability that particle has negative momentum. Indeed from plane 
wave expansion we find that our particle can have momentum of k0 since it has a plane wave 

component eik0 xi0k . The coefficient in front of this plane wave is 
1 

and consequently the
2

2
11

probability of our particle to move backwards is  . 
2 2 

Fifth Postulate (discrete non-degenerate): 


If the measurement of a physical quantity aon the system in the state r ,t  gives the result an

the state of the system immediately after the measurement is u x  .n

M
EA

SU
R
EM

EN
T u x t   , 0    x, t1 n

  x, t0   x, 0 
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Consequences: 

(1) The state of the system right after a measurement is always an eigenvector corresponding to 
the specific eigenvalue, which was the result of the measurement. 

(2) The state of the system is fundamentally perturbed by the measurement process. 

How precisely can we measure a physical quantity? – Before we can answer this question 
let’s consider a helpful mathematical concept: 

The Commutator operator and commutation relations 

The Commutator operator is defined as: Â, B̂  ÂB̂  B̂Â 

Two observables Â  and B̂ are said to commute if: ÂB̂  B̂Â Â, B̂  ÂB̂  B̂Â  0 

Geometrical interpretation: Recall from your linear algebra recitation and the problem set 1. 
When two matrices commute they share eigenvectors. 

2 
Example: Free space Hamiltonian and momentum: Ĥ    

2 

and p̂  i 
2m x2 x 


 

2 2   2    x   
 

2 2 x   i 
3 3 x

 i 
3 3 x   

x i  i  0 2
,i       

2

2   2 3 3 2m x x 2m x  x  x  2m x  2m x 2m x

2 
Do Ĥ    

2 

and p̂  i share eigenfunctions?
2m x2 x

ikx : i  ikx  k  eikxThe eigenfunctions for momentum are plane waves e e
x 

And from the previous lectures we remember that the plane waves are also eigenfunctions for the 

free space Hamiltonian:  
2 2 

eikx  
2k2 

eikx 

2m x2 2m 

Fundamental theorem of algebra: If two operators A and B commute one can construct a basis 
of the state space with eigenfunctions common to A and B, conversely if a basis set is found of 
eigenfunctions common to both A and B then A and B commute. 

How about position and momentum? Do x̂ and p̂ commute? 

  x      x   x    
x̂, p̂ x  i x x   ix  ix  i x x     xi        i    

 x   x  x x 

Then:  x̂, p̂  i 
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It turns out that this relationship is very significant as it Mathematics it means that x and p cannot 
be measured with absolute precision at the same time. In fact their uncertainties (or measurement 
error) must obey the following relationship: 

 x̂, p̂
x  p  x p   

2 2 
This relationship is called Heisenberg’s Uncertainty Principle. In fact it also holds for the 
uncertainties of energy and time: 

E  t   
2 

Symmetries, conserved quantities and constants of motion – how do we identify and label 
states (good quantum numbers) 

The connection between symmetries and conserved quantities: 

In the previous section we showed that the Hamiltonian function plays a major role in our 
understanding of quantum mechanics using it we could find both the eigenfunctions of the 
Hamiltonian and the time evolution of the system. 

What do we mean by when we say an object is symmetric?�What we mean is that if we take the 
object perform a particular operation on it and then compare the result to the initial situation they 
are indistinguishable.�When one speaks of a symmetry it is critical to state symmetric with 
respect to which operation. 

How do symmetries manifest themselves in equations?�Let us suppose that your system is 
symmetric with respect to translations in x that would imply that any physical property could not 
have an x dependence. In particular the energy would not have an explicit dependence on x thus: 

H x, p  dp 0     p  const 
x dt 

The momentum in this case is called a constant of motion. This illustrates a fundamental 
connection between symmetries and conserved quantities. In fact, every symmetry in a 
physical system implies an associated conserved quantity. 

In quantum mechanics the time evolution of an observable is describe by the following equation: 

Ehrenfest Theorem: 

Âd 1 Â, Ĥ 

 Â  dt i t 

Âd 1 Â, Ĥ Â x  x    x  x x  x               dt i t 

Consequently in order for a physical quantity to be a constant of motion the corresponding 
observable has to obey the following relationships: 
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 Â  0 d ˆ t  A  0 
dt Â, Ĥ 

   0
 

States are labeled by specific values of their properties, which do not change with time – 
these properties are called constants of motion. We learned that in QM physical properties are 
represented by operators and that the values of properties obtained in measurements are 
eigenvalues of the corresponding operators. Hence the eigenvalues are used as the labels. 

Conserved Quantities Example 0: Conservative Systems 

The simplest example of a conserved quantity is Energy. Two lectures ago we have considered 
systems, where Hamiltonian does not depend on time explicitly. Obviously Hamiltonian 
commutes with itself and consequently energy is conserved and can be used as a label for a state. 

Ĥ 
 0 

i
E d 
t  Ĥ  0  E  const  uE x x, t  x e 

t

   uE    
Ĥ, Ĥ   dt E
  0  

Reminder: 

    
Schrodinger’s equation:  

2 

V    r, t r, t r     i   
 2m  t 

This type of differential equation is separable, i.e. we can look for a solution in the following 
form:  r

 
, t  r

   . Let’s substitute it into the Schrodinger’s equation above:    t


 

2      
V r r  r      t  i    t

 2m  t 

1 
 

2      1 
 V r r   i  t        

 r 2m  t t        


Note that the left side of the equation only depends on position r  and the right side of the 
equation only depends on time t. This can only be true when both sides of the equation are 
constant E – for energy. Then the equation above splits into the following two equations: 

 I i d   t  E  t   t  e 
i

E 

 

dt 

 

2     
II  2 V    r r x E   r     E    uE  ,

 2m 

Then the solutions to time-dependent Schrodinger’s equation will have a form: 
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E     uE r E  t  uE r   e 
i

E 
t 
r, t 

In general, since the Hamiltonian may have many eigenvalues and corresponding eigenfunctions, 
the solution for this system is a linear combination of all the possible solutions corresponding to 
different energies: 

 

i
E 

t 
r, t 

E 

and boundary conditions.  

This is a very important result: If we know the special wavefunctions (Hamiltonian  

       r e  CEuE , where CE are the coefficients that can be determined from the initial 

eigenfunctions) we can easily find time evolution of this conserveative system. 

r, t
   at any time!If we know E and uE    then we know r

Conserved Quantities Example I: Particle in free space 

Labeling of states is particularly important when the energy eigenvalues are degenerate such as 
in the case of the particle in free space: 

 
2  i 

eĤ x  E x    E  uE         
2 

x x x 
2m x2 

 i  

 e  

Using the energy as a “label” doesn’t completely and uniquely specify a state. 

What about momentum? – If momentum is a constant of motion then we can use it as an 
additional label to uniquely specify the eigenstate. We have shown earlier that the momentum 
operator commutes with free space Hamiltonian, and since it does not explicitly depend on time 
then momentum is indeed a constant of motion. 

 p̂ 
p̂  i   0  dx t p̂  0 

dt p̂, Ĥ 
  0 

  

Therefore the momentum is a conserved quantity and its eigenvalues can be used to label the 
states. Then the unique labels for the eigenfunctions above would be: 

ikx 2mE 
uE,k  x  e , k  

2 

uE,k    eikxx

In fact we represent all the eigenfunctions (eigenstates) of the free space Hamiltonian and the 
momentum on the E vs k plot. Every point on this plot uniquely and completely specifies the 
state. 

2mE 

2 
x 

2mE 

2 
x 
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Conservved Quantitiies Examplee II: Parity operator annd symmetrric potentialls 

Definitioon of a parityy operator: ̂̂ x    x 
What aree the eigenfuunctions and eigenvaluess of the parityy operator: 

ˆ       ˆ ˆ    ˆ    ˆ     ˆ         1u x u x u x u x ̂u x u  x  u x   2u x

The eigeenfunctions of the paritty operator all are eitheer odd or evven. 

f (−x)= f (x) even 

f (−x)−= f (x) odd� 

Does Hammiltonian foor Simple Haarmonic Osc illator commmute with thee parity operrator? 

2 22 2 2 
ˆ  

2 1 11 2 1 2  ˆH x
2 
 m 2 x2  ĤH x

2  m 2 x    
2

2 
 x H x           m 2  

2m x 22 2mm  22 2m x x 2 

Let’s cheeck the commmutator: 

 ˆ   2 2 1  2 2 
 

 
2 2 1 2 

 
, Ĥ x Ĥ x  Ĥ ˆ    

2 

 m x x   x  x     ˆ  x  ˆ  2      2 
m 2     

 2mm x 2   2m x 2   
  22 2 1  2 1 2 

 
  

2 

 mm 2 x   x      m 2 x  x  0  2 

  2  
2m  2 2mm 2 x 2  x   

This meaans that one can always ffind a set of eigenfunctioons commonn to Ĥ  and ̂ . In fact, llast 
lecture wwe have showwn that SHOO eigenfunctiions are alwaays even or oodd. 
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