Lecture 23
Layered Materials and Photonic Band Diagrams

Today
1. Transfer matrix approaches to layered media
2. Periodic layered media

3. Bloch solutions and photonic band diagrams

Questions you should be able to answer by the end of today’s lecture
1. How to derive the transfer matrix that describes the field transformation at interfaces?
2. Transfer matrix approach to solving periodic systems of dielectric materials.
3. Eigenvalue problem and its solutions
4

. Photonic band diagrams and band gaps



Transfer Matrix approach: general treatment of multilayered optical materials.

Consider a 3-layered material with an index of
refraction profile:
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Z of the wavevector K, = # does not change throughout
" the problem (consequence of phase continuity). This
leads to a simple dependence for the evolution in z
direction:
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However for x and y directions the scenario is more
complicated as we have noticed in the previous
lecture when we derived the reflection and transmission coefficients for the single interface. Now
we would like to find a general way to relate any pair of electric and magnetic field amplitudes in
any layer to those in any other layer.
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As usual we would break our electric (and consequently magnetic) field components into s- and
p-polarizations. Here we will only consider s-polarized electric field for simplicity (y-direction
for E and x-z plane, perpendicular to wavevector for H).

For s-polarized field:
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Where E,, E,, E, are the amplitudes of components of the electric field propagating forward
and E',, E',, E', are the amplitudes of the reflected components propagating backward.
If we were to relate the amplitudes in the layer 1 to the layer 3, we will have to consider

propagation across two interfaces 1-2 and 2-3 and the simple propagation through the
homogeneous layer 2.

The effect of propagation through a medium of index n, and thickness d is captured by the
propagation matrix:
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Which is just simple phase accumulation for a plane wave propagating distance d in a
homogeneous medium of index N, .

The interface matrices can be derived from the boundary conditions akin to the way we treated a
single interface:
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Then can rewrite the equations above in a matrix form:

1 —_ 1
E1y+E1y_E2y+E2y

=
n cosGE, —n cosGE' =n,cos6,E, —n,cosO,E",
1 1 Ely 1 1 E2y Ely E2y
O, O, ' = 2] o ' = Dl ' = D2 1
n,cosd, —n cosé, E', n,cosd, —n,cosb, E', E', E',
E E E E
D,'D, :y = '2y =D, :y = '2y ; D,=D,'D,
E ly E 2y E ly E 2y
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Then in order to get find the connection between the electric field amplitudes in layer 1 and layer
3 we need to do the following:



Periodic Medium

We have previously considered electronic properties of periodic materials. We have found that
periodicity led to the gaps in the electronic energy levels. Let’s now consider a material that is
periodic on the scale similar to the wavelength of light. These materials are called “photonic
crystals”.
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The index of refraction is a periodic function:
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The solution in each medium has the form:
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Focus initially on the x dependence of the solutions:

E,e 0 L et la—d, <x<la

E(x)= , .
(x) Ez,e'k“(x"a”j‘) +E",, g axlxtady) (I-)a<x<(I-1)a+d,

Recall that interface matrices D have the following form:



n, cos@, +n;cosd N, cosf, —n,cosb,

-1
D, = Dk_lDi _ 1 1 1 1 _ 2n, cosb, 2n, cos b,
n.cosg, —n,cosd, n,cos —n;cosé, N, cos, —n,cosé N, cos, +n cosb,
2n, cos b, 2n, cos b,

To get the matrix multiplication right it is necessary to carefully consider the form of the
solution:

x =1a" denotes the solution in the medium 1 at the interface X =la (Left Hand Side = LHS)

x =la—d!" denotes the solution in the medium 1 at the interface X =la—d, (RHS)

Consequently:
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From the previous lecture we know that relating the fields across the interface:

E(X)‘x:|a_dl(2J =E,+E',

E E E E
o, = |-bp| o' |=| ' |-biop|
EZI E1| EZI Ell

Now we are at the LHS of the X =na—d, interface (i.e. in medium 2), let’s propagate the wave
in medium 2 to the RHS of interface: x=la—d,—d, =(I-1)a.
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Then putting it all together we finally get:
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Now recall the Bloch theorem that we have used to get the electronic wavefunction for the

periodic material. We can use the same logic for the optically periodic structure or a “photonic
crystal”.

According to Bloch theorem the solution to a periodically constrained system has to have a form:
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Combining these two equations leads us to the following expression:
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The matrix elements are given by the following expression:
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Each one of the matrix elements depends on ® and f.
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Photonic band structures.
The matrix equation above is simply an eigenvalue problem.

For a 2x2 matrix the eigenvalues are given by:
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This equation defines the dispersion relations for the Bloch wavenumber K and wand £ .
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Here we have taken into account that matrix M has a determinant of unity (easy to check
iKa iKa

yourself), which means both €™ and e ™™ are the eigenvalues.
The eigenvectors then are:
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Now we can distinguish between two qualitative regimes:

M, +M ) .
% <1= K is real, waves are propagating
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Then the general solution:

EIIK (X) giKla _ (Eloeiklx(x—la) +E .10 e—iklx(x—la))e_mﬁ

Recall that:
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Lets first consider the case of £ =0 which corresponds to normal incidence (incidence angle of
0). Then:
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Then the dispersion relation @ vs. K can be expressed as:
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Figure removed due to copyright restrictions. Bloch waves corresponding to the A and
B solutions for frequency at the edge of the Brillouin zone: Unknown source.

On the right picture A and B are the Bloch waves corresponding to the A and B solutions for

frequency at the edge of the Brillouin zone (K :% . Here g= 2—7[
a

When S #0, i.e. the wave hits the periodic medium at an angle other than zero, we can find plot
the band diagram for a)( ﬂ)

Figure removed due to copyright restrictions. TM and TE polarization: Unknown source.



Reflection from a dielectric mirror.

Consider a situation where N periods are assembled into a stack this arrangement is also called a
dielectric or distributed Bragg reflector (DBR) and is used extensively in applications ranging
from laser cavities to telecommunication filters.
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This means we can achieve nearly perfect reflection from a material with a large number of
layers:
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