
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lecture 22 

Electromagnetic Waves 

Program: 

1. Energy carried by the wave (Poynting vector). 

2. Maxwell’s equations and Boundary conditions at interfaces. 

3. Materials boundaries: reflection and refraction. Snell’s Law. 

Questions you should be able to answer by the end of today’s lecture: 

1. What is the direction of energy flux of the EM wave? 

2. What is the basic principle behind the boundary conditions for EM waves? 

3. Continuity of what wave parameter is responsible for reflection and Snell’s laws? 
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Reflection and Refraction at Materials Interfaces 

Boundary Conditions: Continuity conditions for the fields obeying Maxwell’s Equations. 
These conditions can be derived from application of Maxwell’s equations, Gauss and Stokes 
Theorems and have to be satisfied at any materials boundary. 

1. n̂      
B

2 
 B

1   0  B  B
1 2 

The component of the magnetic induction perpendicular (normal) to the interface is continuous 
across the interface. 

2. n̂      
D

2 
 D

1   D  D  (  surface charge density) 
2 1 

In the presence of surface charge at the material interface, the normal component of the electric 
displacement changes abruptly by an amount equal to surface charge density  . 

     
3. n̂      0  E  E

1 
E  E

1|2 | 2|| 

The component of the electric field parallel (tangential) to the interface is continuous across the 
interface. 

   
1    

 
K  H  H  K (K  surface current density) 

2|| 1||4. n̂  H  H 
2 

In the presence of a surface current at the interface, the component of the magnetic induction 
parallel (tangential) to the interface changes abruptly by the amount equal to surface current K . 

In many cases in optics, the surface charge density and surface current density are zero, and     
consequently the normal components of D  and B  and the tangential components of E  and H 
are continuous. 

 

 

Consider a charge-free current-free interface between materials with refractive indices n1, n2 . 
Consider a situation where a wave is incident 
form the top onto the interface 

rit
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ikt E  transmitted wave e

   
 k k
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Due to phase continuity, the phases of all three waves (incident, reflected and transmitted) have 
to be equal at the interface plane x  0 . Consequently the phases of the reflected and transmitted 
waves are completely determined by the phase of the incident wave. 

   k
i 
   r 

  
k    r 

r 

  
   r         ktx0 x0 x0 

  k  k k
iy ry     k y  k

rz
z  k tyk

iy 
y  k

iz 
y  kz z

ty tzry 
  k  k k

iz rz tz 

We were able to make these conclusions because z and y are arbitrary coordinates. 

The equations above have two important consequences: 
    

1. The vectors k , k all lie in a plane called the plane of incidence. We have oriented ourk
i 
, 

r t 

coordinate system such that the plane of incidence coincides with the x-z plane. Then electric 
i k xk zt	 x z 

 
field can written in the following form: E  E

0
e 

2.	 The tangential components of the wavevector (components lying within the plane of 
incidence) are identical regardless of the medium that they are in: k

iz 
 k  k   . 

rz tz 

Then: 

  n
1 

n
1	 n

1	 sin
i 

and k  sin, k
iz	 rz 

 kk
i 

  
r rc

0 
c

0 
c

0 

 n
2 

n
2, k  sink  

t tz tc
0 

c
0 

k  k  k
iz rz tz 

From these equations we find: 

1.	 Angle of reflection equals angle of incidence: 

 k  sin
i 
 sin 

i 
k

iz	 rz r r 

2. Snell’s law: 

  
 n1 sini kiz	 


c  n

1
sin

i 
 n

2 
sin

t k  n
2 

sin
tz t c	  
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Total internal reflection. Waveguides. 

As you remember from the Snell’s law: 

n
1n

1
sin

i 
 n

2 
sin

t 
 sin

t 
 sin

in
2 

This implies that if n1  n2  then t i  and if n1  n2  then t i . 

Which means that in the case of n1  n2  for a certain angle of incidence i c  the refraction 

angle t  becomes equal to 90, which in practice means that the light cannot escape through the 

interface and will stay inside the material with higher refractive index. 

This effect is called total internal reflection, and the critical angle is simply: 

Optical fibers and waveguides used for transmission of information over the long distances use 
this principle to keep the EM waves inside. Waveguides consist of higher refractive index ( n1) 
core and lower refractive index ( n2 ) cladding: 

Then we can find the maximum angle at which we can still “couple” EM waves into the 
waveguide so we can take advantage of the total internal reflection. 

The refractive index for air is n  1, then we can find: 

 
 n2sinc  2 

n1   n2 sinmax  n1 cosc  n1 1 sin2 c  n1 1 
   n1 1sin  n1 sin    n1 cosmax c c  2   

2sinmax  n1
2  n2 

Another important characteristic connected to the maximum angle is numerical aperture (NA), 
and in case of coupling between air ( n  1) and fiber: 

NA 1sinmax  n1 
2  n2 
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s-p Polarization: transmission and reflection coefficients 

In general we express the electric fields on both sides of the interface as: 

 


    

  eit 
  

riki  ik r E
i

E  x  0  e e r

r
E    




ikt  itrE x  0e e
t

It is useful to separate the electric field into components. These components are orthogonal to 
each other and are called Polarizations. Every wave can be represented as a superposition of 2 
polarizations. 

 (p) In the plane of incidence ( x  z plane) 

 (s) Perpendicular to the plane of incidence ( y -direction). 

Let’s consider both polarizations separately. 

s-Polarized electric field: 
  
E     0, E

s x, y, z ,0x, y, z 
s 

The electric field above the interface in the 
material n1 will be equal to:  

  
 ikixx ik x  iti zrx 

ey E
is

 E
 

  
E  ˆ 

s 
e e rs 

 incident reflected  

This component is tangential (parallel) to 

the material interface and hence, according 
to the boundary condition  , will beE

1|| 
E

2|| 

continuous across the interface: 
 E  E .E

iy ry ty 

Recall that: 


   
   E   

 B  
 0   E  H  0 

t t 

   
ritH x, y, z  ikSubstituting the plane waveform: H0e  into the equation above, we find: 

 
  E  iH  0 
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  
  E   

x̂ ŷ ẑ 

   
x y z 

0 E 
y 

0 

   
Since E  H , and the electric field is perpendicular to the plane of incidence, the magnetic field 
will lie in the plane of incidence and perpendicular to the wavevector. Recall the boundary 
condition for the tangential component (parallel to the interface, z in our case) of the magnetic 
field: The tangential component of the magnetic field H  H  J .

2|| 1|| 

In the absence of currents ( H1||  H2||) the condition above implies continuity of the z-component 
of the magnetic field across the interface (in x  0  plane): Hiz  Hrz  Htz 

1     1  i kixxkiz z 1 i kixxkiz z H
iz 
  E

y 
 E

x   E
i
e   ik

ix 
E

i
e 

i x y  i x i
0 0 0 

  
Recall: k

ix 
 k

i 
cos

i 
  

n
1
 

c
0 

  
2
n

cos
i 

and k
tx 
 cosk

t 
  cos

t tc
0 

n
1 i kixxkiz z i kixxz n

1  cos
i

e  cos
i

eH
iz 

E
i

E
ic

0


0 
c

0


0 

n
1 ikixxkiz z n

1 i kixx zH    cos
i
E e    cos

i
E e 

rz r rc  c 
0 0 0 0 

n  z n  xzt i ktxxktz   2 i ktx H    cos E e cos E e
tz t t t tc

0


0 
c

0


0 

Consequently the boundary conditions will lead us to two equations for electric field amplitudes 
for the reflected and transmitted waves: 

  E
iy 
 E

ry 
 E

ty 
 
 

 E
iy 
 E

ry 
 E

ty  

H
iz 
 H

rz 
 H

tz   n
1 
cos

i
E

iy 
 n

1 
cos

i
E

ry 
 n

2 
cos

t
E

ty 

Then we can find reflection and transmission coefficients for the s-polarized wave: 

 E
ry 
 n

1 
cos

i 
 n

2 
cos

tr     
s n

1 
cos

i 
 n

2 
cos Eiy  t 

 
ty 
 2n

1 
cos

it
s 
  

E
  

n
1 
cos

i 
 n

2 
cos Eiy  t 

2
Then the reflectivity of the interface is simply: R  rs 
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p-Polarization: 
  
E      E  x, y, z ,0, E x, y, zx, y, z 

p px pz 

In the absence of interface charge the 
boundary condition electrical fields 
perpendicular to the material interface is: 

D
1  D

2 
1
E

1 2 
E

2 

This implies that the z-component of 
electric field has to be conserved across the 
interface: 

 E  E  E
1 iz 1 rz 2 tz 

We also know that the components of the 
electrical field parallel to the interface have 
to be conserved across the interface:    
E  E

1|| 2|| 

Which in this case means that x-component 
of the electric field have to be conserved across the interface: 

Eix  Erx  Etx 

Combining the equations we got from the boundary conditions we get: 


1
E

iz 


1
E 

rz 
 

2 
E

tz 
 

1 
sin

i 
E

i 

n
1 
sin

i 
 n

2 
sin

t 
and 


1 
sin

i 
E 

r 


1 
 n

1 
2 , 

2 

 
2 
sin

t 
E

t 

 n
2 
2 

 

 
 n

1
E

i 
 n

1
E 

r 
 n

2 
E

t 

Eix  Erx  Etx  cosi Ei  Er   cost Et 

Leading to the transmission and reflection coefficients: 

r 
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 

E 
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E
i 

 


 

 


  

n
2 
cos
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n
2 
cos
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 n
1 
cos
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 n
1 
cos
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E
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E
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 


 

 


  

2n
1 
cos

i 

n
2 
cos

i 
 n

1 
cos

t 

Note that for p-polarization there exists an angle known as Brewster angle at which the 
reflection coefficient is zero and all the light is transmitted: 
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2 2 2 2 n

1 n
2 1 sin2 

i   n
1 1 sin2 

t   n
2 1 sin2 

i   n
1 
1 sin2 
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 n
2
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 
4 2 2n1

4  n
2 sin2 
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 n

2 n1
2  n

2  
n

2
2 

sin2 
i 
 

2n
1
2  n

2 

Anti-reflection coatings: maximizing the coupling of light into the material. 

Many applications such as solar panels, optical interconnects require maximum coupling of the 
incoming light into the material. As you have seen above at intersection of any two materials 
with different refractive indices there is significant reflection, which is highly undesirable for the 
above-mentioned applications. It is possible, however to create a coating at the interface of the 

two materials that would minimize the reflection 
between them. 

By using the reflection and transmission coefficients at 
both surfaces one can find that the reflection 
coefficient will be minimal when: 

nI  n0nS 
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0Alternatively one can use quarter-wave coatings. These coatings are precisely d  thick and 
4nI

they work by making the waves reflected from the first and second interfaces be exactly out of 
phase and hence annihilate each other. 

However, note that quarter-wave coatings work best for a particular wavelength, which they 
have been designed for but matching indices of refraction is general solution that works for most 
materials with low dispersion. 
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