
 
 

 

 
 

 

 
 
 

 

 
 

Lecture 2  
The Hamiltonian approach to classical mechanics.  
Analysis of vibrations in one-dimensional lattice.   

Program: 
1. Vibrations of a simple diatomic molecule. 
2. Lattice vibrations in a monoatomic 1D lattice: modes and dispersion relations. 

Questions you should be able to answer by the end of today’s lecture: 
1. The Hamiltonian analysis of vibrations in a 1D monoatomic lattice? 
2. The graphical representation of solutions – dispersion relations. 
3. What is the physical significance of the shape of the dispersion relations? 

References: 
1. Kittel, Chapter 4, page 99. 
2. Ashcroft and Mermin, Chapter 22, page 422. 
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Example III: 1D Diatomic molecule 
Here we will consider a simple diatomic molecule – let’s say H2, where two hydrogen atoms are 
bound to each other with a single sigma bond. Since the bond is stretchable and compressible to 
a certain extent we can approximate it with a spring, and approximate the hydrogen atoms as 
balls attached to its ends. We will soon learn that this model doesn’t work to explain electronic 
structure but for our purposes of understanding lattice vibration it provides a sufficient 
framework. 

I. The system: Two atoms (approximated) by balls of mass m are bound by a stretchable bond 

approximated with a spring of length . Here the position and ml and stiffness K omentum of the 

left atom are x1 and p1, the position and momentum of the right atom are x2, p2. 

l, K 

m m 

II. The Hamiltonian. 

2 2 2 2 

 mv2 K
The energy for this molecule is: E  mv1  K 

l2 

 p1  p2  x2  x1  l2 

2 2 2 2m 2m 2 

Then the Hamiltonian for this system is: 

p1
2 p2

2 K 2 , ;  x , p     x  x  l H x  p  1 1 2 2 2 12m 2m 2 

III. The Hamilton’s equations of motion for this system are: 
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2 

The Hamilton’s equations yield the following equations of motion: 
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d 2 x1,2 K   x2  x1  l 
dt 2 m  

These coupled first order equations can be solved by generating uncoupled second order 
equations (See Mathematica Notebook posted for this lecture). 

 u  x1  x2  x1  u  z  l / 2 d 2  z  x2  x1  l  x2  u  z  l / 2x1  x2   0 dt2  d 2u  
   du 
 d 2 2K  dt2 

 0 
 u t   u 0  t  x2  x1    x2  x1  l dt t0   dt2 m d 2z 2K  z  0  z t   Aei 2 K mt  Bei 

 dt2 m  
2 K m t 

 

If we take initial conditions to be , then we find solutions: 

Example IV: Longitudinal vibrations of a one 1D monoatomic lattice. 
(Can also be applied to cubic crystals with a mono-atomic basis.) 

I. The system 
Consists of ions located on a lattice defined by a lattice vector sa. The ions are assumed to be 
deviating from their respective lattice points by a distance us, which is taken to be smaller than 
the lattice constant a. 

us 

sa s+1s-1 

II. The Hamiltonian 

We assume that the elastic energy is quadratic in the displacement, then we can write the total 
energy of the lattice is: 

2 2 

Elattice  mvs 1 2 ps K 2 K xs1  x  a   us1  u 
2 2 s 2m 2 s  

s s s s 

Then it is convenient to write a Hamiltonian for the crystal as a function of displacement us 

rather than coordinate xs: 
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H   Kus1 
 u

s 2s 2m s 

III. Hamilton’s equations of motion 
Through the application of Hamilton’s equations we derive the equations of motion: 
H dps   
us dt  

H dus 
ps dt 

Focus on the terms in the Hamiltonian that contain us and ps

p2 1 1 2 
sH   K u  u 2 

 K u  u   ... 
s s1 s s s12m 2 2 

We then obtain: 
du

s 
p

s 
dt m 

dp
s  K u   u  K u   u  K u   u  2u

dt 
     s1 s s s1 s1 s1 s 

d 2u
s K u  u  2u s1 s1 s

And the equations of motion are in the form: dt2 m 

Look for solutions that have a time dependence of the form ~ eit , and substitute back in the 
above equation to obtain a difference equation: 

d 2it  
u

su  e   2u 
s sdt 2 

 2u  K u  u  2u s s1 s1 sm 

i s  ka   1This difference equation has solution of the form: us  uoe
iksa , then us1  ue  where a is the 

lattice constant and k is called the wavevector (wavenumber as a scalar). 

iksaitThen the total displacement of an ion s at time t can be written as: uk s,t  u
o
e

Substituting us into the difference equation above, we find: 

  2 iska  K i s1ka i s1ka iska K ika  eika  2e e  e  2e   2  e  
m m  
2K 4K  ka 2 k 1 coska  k sin    
M 

    
M 2 
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Dispersion relations 
The last equation defines the dispersion 

1 relation  k, which is a periodic function 

of k.
0.8 

The dispersion relation constitutes a 
graphical representation of the independent0.6 
solutions. If we know the boundary 
conditions, i.e. a vector of initial 

displacements u1 0 0  and initial 

0.4 
 ,...u

s   ,... 0.2 
du

1velocities  
-3 -2 -1 0 1 2 3  dtk 

du 
s,... 

t0 
dt 

 
,.. ,


t0  
k and ω define a solution. 

Physical characteristics of the solutions: 

1.	 Crystal cannot transmit sound at frequencies above: 

4Kmax  
M 

2. The ratio of two adjacent displacements is: 
ik s1au ues1 ika  

iksa 
 e  , which indicates that a solution involving k and a solution that has 

us ue  

a k’=k+n2π/a are equivalent.  
 

3. Unique solutions only for those values of k that are restricted to the first BZ:    k  
a a 

	 d Ka  2 ka  
4. Phase velocity: c   and group velocity: vg   cos 

k	 dk M 2 


5. Standing waves at the edge of the Brillouin zone for solutions where k satisfies: k    . 

a 
Adjacent atoms move in opposite directions the wave is not propagating (group velocity is 
vg=0). 
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This is the same condition that is satisfied when you get the so called Bragg 
reflections in optics (or x-ray diffraction). Recall the condition for Bragg diffraction: 

k is the wavevector and is related to the wavelength by: 

We just saw from the analysis above that we get standing waves at 

which is identical to the Bragg condition. 

6.	 Long wavelength limit occurs when ka<<1. Under these conditions, the wavelength is 
much larger than the lattice spacing, chain can be treated as a continuum. The dispersion 
relations may be expanded in a Taylor series near ka=0: 

2K	 k  1 cos  2      ka  
M 

 2 

cos ka  1  O ka
ka 

2 
 4  

K 
ka

M
  

K 
a

M 

d
and the velocity of sound v    is independent of frequency, similar to the g dk 
continuum model.  
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