
 

 

 

 

 

 

 

Lecture 19 

Light Emitting Diodes. 

Today: 

1. Carrier recombination in semiconductors. 

2. p-n junctions with carrier injection. Light-emitting diodes (LEDs). 

Questions you should be able to answer by the end of today’s lecture: 

1. What is the mechanism of operation of light emitting devices? 

2. What are important LED design characteristics? 

3. What is the joint density of states and the emission condition? 

4. What determines electroluminescence spectrum of an LED? 
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Carrier recombination. Light-emitting diodes. 

In any semiconductor electrons and holes can meet spontaneously and recombine, i.e. conduction 
electrons can fall down and fill the holes in the valence band, the excess energy is then released 
as a photon. At low temperatures (e.g. room temperature) the concentration of carriers even in 

doped semiconductors is too low for the 
carriers to meet and recombine 
spontaneously. However is we electrically 
inject carriers into the semiconductor we can 
raise their concentration dramatically so that 
the probability of recombination becomes 
significant and we can observe emitted 

photons. Generally we would use a p-n junction diode in a forward bias regime to inject high 
concentrations of electrons into the n-side and holes into the p-side. These carriers can then 
meet at the junction and recombine releasing photons. 
This process is called “electroluminescence”. 

There are three general types of light-emitting devices: 

(a) Light-emitting diodes (LEDs): 
Electrically injected electrons and holes recombine at the p-n junction leading to 
spontaneous emission. 

(b) Semiconductor optical amplifiers (SOAs): 
In addition to injected carriers p-n junction is under illumination, which increases the 
overall population of carriers and for each incoming photon two photons are emitted, 
hence the device works as an amplifier. 

(c) Laser diodes (LDs): 
Extremely high carrier injection levels can lead combined with a positive feedback (a pair 
of mirrors – an optical cavity) can lead to stimulated emission or lasing. 

Figure removed due to copyright restrictions. Fig. 16.0-1: Saleh, Bahaa E. A.,
and Malvin Carl Teich. )XQGDPHQWDOV�RI�3KRWRQLFV� 2nd ed. Wiley, 2007.
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We will focus on light-emitting diodes (LEDs). 

The efficiency of LEDs will be determined by the radiative recombination rate. As we have seen 
earlier there are many other ways that electron-hole pair can recombine, all these processes (R–G 
center recombination, Auger recombination etc.) will contribute negatively to the LED 
efficiency, so we need to maximize the radiative recombination rate and minimize all other 
recombination rates. 

If we inject n  p  excess carriers (current has to be the same on n and p sides due to 

continuity and charge neutrality) into the p-n diode, the carrier concentrations at the junction will 
be: p  p0 n, n  n0 n where n0, p0  are the equilibrium carrier concentrations without the 

current injection. 

Let’s assume that due to all recombination processes electron-hole pairs recombine within a time 
  – electron-hole pair lifetime. We can also assume that in the steady state the excess of injected 

n
carriers is balanced by the recombination, then the carrier injection rate is: R  

 
1

In low injection regime (no stimulated emission or amplification):   , were k  is a 
k n0  p0  

recombination constant (generally experimentally determined number). 

n
Then the injection rate R: R   kn n0  p0 

 
The internal quantum efficiency (IQE) of an LED is determined by the ration of the radiative 
recombination rate to the recombination rate due to all processes: 

kR kRIQE i   , where kR, kNR  are radiative and no-radiative recombination constants. 
k kR  kNR 

  R  NRAlternatively we can write it as: i   , where  R  is the radiative lifetime. 
 R  R 

Then the number of emitted photons per unit volume per second will be proportional to the 
radiative recombination constant and the concentration of injected carriers n: 

i iR  kRn n0  p0   
n n i iR i 
  R 

n
The flux of photons emitted by a volume V is: i  Vi  V 

 R 
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As you noticed the internal quantum efficiency does not take into account photon extraction 
efficiency but is solely determined by the radiative recombination time. The external quantum 
efficiency of the LED takes into account the device design parameters and is simply defined as: 

photons out photons s 
EQE ex    

electrons in electrons s I 

Where   is the measured photon flux and I  is injected current. 

During the experiment photodetector is used to measure the total optical power P  [W] emitted 
from an LED. Then for a given wavelength   we can find the photon flux: 

P P   
photon energy ch  

 P
Then: EQE ex   

I Ich 

However in order to find total efficiency we need to integrate over the entire electroluminescence 
spectrum. 

Note that expression above is exactly opposite to the EQE for the solar cell, this means that 
device optimized to be a good LED will generally be a poor solar cell and vice versa. 

LED electroluminescence spectra. 

The spontaneous emission rate depends on the photon energy: 

k  sp   
 
1 

R 

gj    fe  

Where gj E E  is the joint occupation probability for the    is the joint density of states and fe  

valence and conduction bands also known as the emission condition.  

The joint density of states is analogous to the density 
of states for the conduction or valence band but in this 
case we are considering the number of states available 
to electrons and holes, which upon recombination 
would yield to photons of particular frequency. In 
order to determine the joint density of states we use 
the parabolic approximation for the bands at the band 
edge. Recall that: 

Figure removed due to copyright restrictions. Fig. 16.1-2:
Saleh, Bahaa E. A., and Malvin Carl Teich. )XQGDPHQWDOV
RI�3KRWRQLFV. 2nd ed. Wiley, 2007.
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 
2k2 

E2  E for electrons in the conduction band 
2mc 

* g 

E1    
2

2

m

k

v 

2 

for holes in the valence band 
* 

Then the energy of the photon emitted when the electron with energy E2  recombines with the 

hole with energy E1 is: 

 
2k 2 

 
2k2 

  E2  E1  
2k

*

2 

 Eg * 
 Eg2mc 2mc 2mr 

* * mmc vWhere mr   is the reduced mass and E    is the energy of the emitted photon. 
mc 

*  mv 
*

Then we can write the energies of the electron and the hole as: 

E2  Ec  mr   Eg   Ec  mr   Eg * * mmc c 

 mrE1  E   E   E2  v * gmv 

As the number of recombining electron hole pairs corresponds directly to the number of emitted 
photons we can write that the total number of electrons dropping into the valence band and 
filling holes is exact same as number of photons in the ideal case, then: 

 
3E2  gj    d  

d E2 

gc    dE2  
   dE2 

* 2    
 *  

3 
 
 gj    g E2 

mc  
2E2  E m 2 c c 23d dgc E

c 
2 E  Ec     

 23 
 

3 
  

d E   E* 2mc  
 mr 

 
 c  

m
m

c

r 
*  g 


 

 gj  2 Ec   Eg c     *   E
 23  mc  d 

3 

mr  gj   22

2 

2   Eg     
The emission condition is then expressed in terms of the Fermi distributions of the electrons and 
holes: 

f  E2  E1   f    1 f  e c v 

Here fc  , v    are the Fermi distribution functions for electrons and holes in the non-E f E

equilibrium injection conditions: 
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1
f E   

kBTc EEFc1 e 
1 

1 fv   E
EFv E kBT1 e

Where EFc, EFv  are the non-equilibrium Fermi levels 

or quasi-Fermi levels (due to injection) for electrons 
and holes. During injection the concentration of carries 
can be so high that the conduction band would have 
much higher concentration of electrons and the valence
band would have much higher concentration of holes 
than they would have in thermal equilibrium, which can 
be expressed in terms of quasi-Fermi levels moving into 
the bands making the SC behaving almost like a metal. 

We can determine the quasi-Fermi levels based on the injection concentrations. Remember how 
we calculated carrier densities in equilibrium using D.O.S function and the Fermi distribution, so 
the same logic applies here: 

 * * mc 2mc E  Ec  n  n0 n  gc E c E , gc   
 22 2    f    dE E

Ec 

Ev * * mv 2m E  Ev vg E    dE Ep  p0 n   v    fv E , gv    
 22 2 

 

In the conditions when E2  EFc, E1  EFv  we can approximate the Fermi functions with 

exponentials: 

1 EEFc  kBTf E  e   
kBTc EEFc1 e 

1  EFv E kBT1 fv   E  e
EFv E kBT1 e

Then the spontaneous emission rate can be found as: 

3 

1 mr
2   E2 EFc  kBT EFv E1 kBTk  gj    f   2  E e    esp e g R  22 R  

3 3  

   2 m   E2 E1Eg  kBTE2 E1 kBT  r EFcEFv Eg  kBTr EFc EFv  kBTk 
m

e 2  E e e 2  E e   
2 

sp g g 22 R  22 R 
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Figure removed due to copyright restrictions. Fig. 16.1-3:
Saleh, Bahaa E. A., and Malvin Carl Teich. )XQGDPHQWDOV
RI�3KRWRQLFV. 2nd ed. Wiley, 2007.



 

 

 

 

 

Recalling that: E2  E1   

3 

    kBT Eg  kBTmr EFc EFv Eg 2  E e   
2 

ksp  e g 22 R 
3 

2Eg  kBT 2mr  EFcEFv Eg  kBT
ksp    Eg e , where D  e   D 

2 22 R 

Figure removed due to copyright restrictions. Fig. 16.1-4: Saleh, Bahaa E. A.,
and Malvin Carl Teich. )XQGDPHQWDOV�RI�3KRWRQLFV� 2nd ed. Wiley, 2007.

The electroluminescence peak can be found approximately by taking a derivative of the 
spontaneous rate with respect to photon frequency: 

d 
ksp    0  

d 
d Eg  kBT 

  1 Eg  kBT   Eg  kBT
D   Eg e   D e   Eg e 

  0 
d  

 2   Eg kBT  
1 1 1  peak  Eg   0   peak  Eg  kBT 
2 kBT 2 
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Note that D  increases exponentially as the spacing between the quasi-Fermi levels 
increases with respect to the bandgap, i.e. the emission rate increases exponentially as we 
inject more carriers.  

On the other hand the dependence of the rate on photon frequency is independent of 
injection, i.e. electroluminescence spectrum does not change with increasing injection. 



 

 

Wavelength (nm)

InAs

InSb

PbSe

PbTe

Ga(AsxP1-x)

(GaxIn1-x)As

In(AsxP1-x)

GaSb

Pb1-xSnxTe

Ga1-xAlxAs

InGaAsP

InGaP

ZnSe

InxGa1-xN

Material

GaAs

InP

838 (4.2 K)

843 (77 K)

910 (77 K)

3,100 (77 K)

526 (10 K)

8,500 (4.2 K)

6,500 (12 K)

650-840

840-3,500

910-3,500

1,600 (77 K)

(9.5-28 µm) (12 K)

690-850

1,200-1,600

500-700

490-500 (4.2 K)

450-650

 

The bandgap of the material and the ambient temperature determine the emission 
wavelengths of the LED. 
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Figure removed due to copyright restrictions. Graph of semiconductor band gap vs. lattice constants.
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http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/illustr/bandgap_misfit.gif
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