
 

 

 

 

 

 

 

 

 

  

 

 

 

  

Lecture 15 

Fermi-Dirac Distribution 

Today: 

1.	 Fermi energy, and momentum, DOS. 

2.	 Statistics of gases. 

3.	 Fermi-Dirac distribution. 

Questions you should be able to answer by the end of today’s lecture: 

1.	 What are the basic steps used to derive the Fermi-Dirac distribution? 

2.	 Where did the Fermionic properties of the electrons enter in the derivation? 

3.	 What is the physical significance of the Fermi energy and Fermi k-vector? 

4.	 How does the position of Fermi level with respect to band structure determine the 
materials electron transport properties? 
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We are now going to introduce N electrons into the system at T=0 and are going to ask what 
states are these electrons going to occupy? If there are many electrons they will fill a circle in 2D 
or a sphere in 3D, the surface of this sphere represents the electrons, which have the maximum 
energy, and also separates filled from unfilled states and is called the Fermi surface. 

Filling the available states - Statistics of Fermi Gas. 

How do electrons get distributed between the states are available to them? 

Lets consider a simple case of a 2-particle gas. Particles A and B are identical in a system which 
has 3 possible eigenstates 1, 2 and 3. 

The Maxwell-Boltzman case: A and B are classical and distinguishable. 

1 2 3 

1 AB 
2 AB 
3 AB 
4 A B 
5 A B 
6 A B 
7 B A 
8 B A 
9 B A 

The Bose Einstein case: A and B are indistinguishable (A=B) and are Bosons. 

1 2 3 

1 AA 
2 AA 
3 AA 
4 A A 
5 A A 
6 A A 

The Fermi-Dirac case: A and B are indistinguishable (A=B) and are Fermions. 

1 2 3 

1 A A 
2 A A 
3 A A 

The number of different possible states for the whole gas: 
MB=9, BE=6, FD=3 
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We can define the following parameter which characterizes the tendency of the particles to 
“bunch”: 

probability of two particles in the same state   
probability of two particles in different states  

1 MB  , BE 1, FD  0 
2

Compared to the classical case the bosons tend to bunch while fermions (electrons) remain apart. 

Now, let’s consider N identical electrons in a volume V at temperature T. 

Using the following notation: 

s  – Single electron eigenstate.  
s - Single electron energy eigenvalue.  
ns  - Occupation number - the number of electrons in eigenstate s.  
S – an eigenstate (sometimes called a microstate) of the entire electron gas for a particular  
configuration. For example the 3 states in the table above are “microstates” of the two-electron  
gas with three available states.  

ES 
– The energy eigenvalue for an eigenstate (microstate) S of the entire gas.  

Assume we have in our system 3 states s, and two electrons what are the possible “microstates”? 

1 2 3 

S=1 e- e-

S=2 e- e-

S=3 e- e-

What are the properties of this gas? 

(1) Total energy of the gas in an eigenstate S: 

E
S 
 n   n   .... n 

1 1 2 2 s s  
s  

n
s 
 N 

s 

(2) It can be shown that the probability of finding the system in a particular eigenstate S of 
energy Es is given by: 

ES

P S   e kBT

ES

 e kBT

 all S 
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Generally Fermi-Dirac function is written as: f    1

e
 
kT 1

 

 

 

ES
BWhere the denominator is a very useful function called the partition function: Z   e k T

 all S 

All thermodynamic properties of the gas can be calculated from the knowledge of Z. 

The partition function Z is related to the Helmholtz free energy of the system through: 

F  kBT ln Z 

The summation is over all distinct states of the gas – S (i.e. all possible values of n
1
,n

2
,....,n

N  ) 

this expression holds for all types of particles. The difference lies in the number of different 
states S. 

The chemical potential is defined as the change in free energy upon adding a particle to the 
system: 

  F N 1  F N     

N

F 

Fermi-Dirac Distribution 

The range of allowable single-electron state occupation number: ns  0,1 

Since the particles are indistinguishable it is enough to use the occupation vector  1, 2 n n ,...  to 

completely define a state. 

A very important quantity is the mean number of particles in a particular single electron 
state s, for electrons: 

sum of the probabilities of  
  

n
s 
 obtaining gas states S where  
 single-electron state  , is occupied  s  

1
Using the partition function defined above one can show that: ns   s   

e kT 1 

This relation (for fermions) is called the Fermi-Dirac distribution it plays a key role in 
determining electronic properties. 

  f  0 
An important observation regarding the FD distribution: 

f  1 
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These properties are consequences of Pauli’s exclusion principle. 

)LJXUH�UHPRYHG�GXH�WR�FRS\ULJKW�UHVWULFWLRQV��)LJV�����D�E��)HUPL�'LUDF 
DQG�0D[ZHOO�%ROW]PDQ�'LVWULEXWLRQV��8QNQRZQ�VRXUFH� 

 
 k  1    

 
For T=0K, we can show that: lim f

T0 
 
k ,s 
 
 0  k  
  

As you can see electrons at 0K will occupy all the states with energies    and will not occupy 
any states with energies   . 

As you can see chemical potential  is a very important intrinsic material property and it iss 
often referred to as a “Fermi level”  F . 

The position of the Fermi level with respect to bands defines the nature of the material: 

Definitions 

Fermi sphere – the surface in k-space that separates occupied from unoccupied levels. 

Fermi momentum -
  
p

F 

  
 k

F 
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 
p

FFermi velocity - plays a role in metals similar to that of the thermal velocity in a classical 
m 

gas. 

Once we know Fermi energy we can find out the total number of “occupied states” using our 
D.O.S. function. 

In 3D in metals: 

3 3	 34k
F 1 4k

F V N k
F 2   2  n  N

electrons	 33	  2  3 2 3 V 3 2 

 
 L	 

All of these quantities depend on a single parameter the density of the free electrons 

Typical values for the free electron densities in metals are: 

 elec 
Li  4.71022  

cm3 
	 elec 

K 1.31022  3 cm 
 elec 

Ag  5.86 1022  
cm3 

 elec
Fe  171022  

cm3 

The corresponding de-Broglie wavelength is on the order on angstroms 

The Fermi velocity is about 0.01c where c is the speed of light. 

 
2 

The Fermi energy is: F 
k

F 
2 , typically in the range of 1.5-15eV.

2m 

2 

To calculate the ground state energy E, of N electrons: E  2  k 2 

2mkkF 

Here all of the states are explicitly counted. Because of the small spacing in the k space it is also 
possible to transform to a continuous variable and integrate. 

V 2 V 2k
F 
5 

E   d 3k k 2  
8 3 2m  2 10mkkF  

#  of states in volume 
d3k 

The energy per electron in the ground state (using the expression for N/V from above): 
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E V5kF 
5  210m 3 2kF 

2 3 
3 

  FN VkF 3 2 5 2m 5 

Compare this value with the average energy per particle in a classical Maxwell-Boltzman gas: 

3
E  kBT 

2 

EFIf we define Fermi Temperature as: EF  kBTF  TF  
kB 

We would find that the classical gas would only reach the same energy per particle at 
temperature approaching TF which is ~104 K for metals. 

The heat capacity of the free electron gas 

The heat capacity of an electron gas: 

The equipartition theorem basically states that for each degree of freedom in the Hamiltonian 
1

there is a contribution of kB  to the heat capacity. Therefore it is expected that the free electron 
2 

gas will have a heat capacity of: 

3 
cv  n kB2 

Yet in reality the contribution of the free electrons to the heat capacity in a metal was only 0.01 
of that value? How come the electrons are mobile enough to participate in the conduction 
process but do not contribute to the heat capacity? 

When we heat the sample from T=0 K not every electron gains k T  as expected from classical B

considerations. In fact only the electrons near the Fermi energy can absorb that extra kinetic 
energy by promoting themselves to higher energy orbitals. The rest of the electrons are trapped 
in their orbitals. 

T
The fraction of electrons that can be excited is on the order of ~ 

T
F 

 2 
Bk T

And the heat capacity then is: cv  nkB2 F 
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