
 

 

 

 

  

 

 

 

  

 

 

 

Lecture 10 

Waves in Periodic Potentials 

Today: 

1.	 Direct lattice and periodic potential as a convolution of a lattice and a basis. 

2.	 The discrete translation operator: eigenvalues and eigenfunctions. 

3.	 Conserved quantities in systems with discrete translational symmetry. 

4.	 Bloch’s theorem. 

Questions you should be able to address after today’s lecture: 

1.	 How to mathematically represent a crystal 

2.	 What is the definition of an “inverse lattice”? 

3.	 What is the Hamiltonian for a periodic system? 

4.	 What is the definition and eigenvalues/eigenfunctions of the discrete translational 
operator (DTO)? 

5.	 How is the DTO used to find the energy e-values/e-functions of a system with a 
periodic potential? 

6.	 What is the conserved number associated with the discrete translational symmetry 
in a periodic system? 
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Many materials have crystalline structure and ions are arranged in a periodic lattice. As 
all the ions in the lattice exert Coulombic potentials on an electron, the overall potential 
experienced by the electron appears periodic. The periodicity of the potential defines 
the electronic and optical properties of the crystalline solids and is consequently 
“electrons in periodic potentials” is the most important problem of this course. 

I Hamiltonians for periodic potentials: 

For simplicity lets consider one-electron Hamiltonian of a crystal - a system with a 
periodic potential: 
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where,  
V r  R V  V x   nar  V x        

Take a closer look at what makes a potential periodic – the repetition of a basic unit at 
regular spacings (crystal lattice)! 

II Eigenfunctions of infinite crystal: The effect of a periodic potential 

Let us define a discrete translation operator: T̂ 
a  x   x  a 

u x  u xOne can find eigenfunctions for this operator: T̂ 
a     

By inspection the eigenfunctions of the discrete translational operator are of the form: 

ikx f xx
k    e    

 f xWhere f(x) is a function that is periodic in a (a is the lattice period): f x  a    
ik xa  ika ikx f x ika

k
Let’s verify our hypothesis: T̂ 

k
x  e f x   a  e e  e xa   






 
k x   

Our objective is to identify the eigenfunctions of the Hamiltonian. We will use the fact 

that the discrete translational operator T̂ 
a  commutes with the periodic potential 

Hamiltonian: 
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 

2 2   2 
T̂ , Ĥ x  V x  x  V x T̂  x    T̂         
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      a a 2	 2 a
 2m x   2m x   

   
2	  2 	    

2 

V x  a  x  a   
2 

V x  x  a  2m x  a2   2m x2 	  
 2   2  

  
2 

V x x  a    
2 

V x  x  a         0 
 2m x2   2m x2  

Thus eigenfunctions, which are common to the Hamiltonian and the discrete translation 
operator can be found of the form: 

ikx f xx f x   a  f x
k    e   ,      

Bloch’s Theorem 

 

The eigenfunctions of the one-electron Hamiltonian with a periodic potential: 


r2 V r    , where 

 
r 	 has the periodicity of the underlying 

 

r  

 
Ĥ    

2  
     

R  is the lattice vector, can be written inV R  V r  ,
2m 

r   e    , where f

r

 f 

 
ithe form:  k �r f 
 

  
k k kn , n n 

 
R      

Bravais lattice, f R . r   for all lattice vectors  
k kn n 

Another way of stating Bloch’s Theorem is: 

    
The eigenfunctions of the one-electron Hamiltonian with a periodic potential have the 

ik �Rr    form:  R   e r   n ,k n,k 

Two important comments: 

1.	 The eigenvalues corresponding to the discrete translational operator depend only on k 
and not on the particular form of the periodic function. 

2.	 The only distinct eigenvalues correspond to k in the first Brillouin Zone (BZ). 
   

For 1D case with the lattice constant a, BZ is k    , 

: 

 a	 a 
ika x  a  e x	  n ,k n,k 

  
i k2 

n a2 ik 'a  a  ika i2n ikak '  k  n  e  e  e e  e
a 
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How do we label our states? What is the conserved quantity in this case? 

k is the Bloch wave number (or wave vector, sometimes called the crystal momentum) 
and represents a conserved quantity associated with the discrete translation symmetry in 
the crystal. As we have demonstrated above, crystal momentum is related to the 

ika : ikaeigenvalue of the discrete translation operator e T̂ u  x  e  x .a n ,k n ,k 

n is associated with the energy eigenvalues.  

We can plot the dispersion relation or a band diagram: E vs. k.  

Is the Crystal momentum identical to the Momentum? 
Is the momentum conserved in crystals? 

     keikx f x
ikx f x ikx p̂    i x e f x xx     i   ie    const   n,k n ,k n,kx x x 

 x
n ,k    are not eigenfunctions of momentum, this means that momentum operator does 

not commute with a Hamiltonian – let’s check this: 

 p̂, Ĥ x pĤ x Hp̂ x     ˆ    ˆ    

 2   2   
 i V x  x    

2 

V x  i  
 

2 

       x  
x  2m x2   2m x2  x  

2 x 2 xi3       i3   
V x

    iV x  i x     iV x x  
 

x  
 

2m x2 x x 2m x2 x 
  

V x
 i x

x 
  p̂, Ĥ

  i 
V x

 0 x 
Then according to the Ehrenfest theorem momentum is NOT conserved in crystals! 

k – Crystal momentum (Bloch wavevector) is conserved and is different from  
momentum!  
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