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Part |l Topics

It's a Quantum World: The Theory of Quantum Mechanics
Quantum Mechanics: Practice Makes Perfect
From Many-Body to Single-Particle; Ouantum Modeling of Molecules

Application of Quantum Modeling of Molecules: Solar Thermal Fuels

.
2.
3.
4.
5.

Application of Quantum Modeling of Molecules: Hydrogen Storage

rom Atoms to dSolids
Quantum Modeling of Solids: Basic Properties

Advanced Prop. of Materials:What else can we do!?

N 0 N C

. Application of Quantum Modeling of Solids: Solar Cells Part |

| O. Application of Quantum Modeling of Solids: Solar Cells Part I

| 1. Application of Quantum Modeling of Solids: Nanotechnology



|l esson outline

® Feeling good about energy levels

® Continued discussion of solar thermal
fuels

® |nteractive calculations and discussion
on candidate fuels

® Hydrogen storage



Let’s look at a single element:

carbon
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Carbon in Energy to Date

One Barrel of oil

(159 liters) =
|.73 MWh of energy.
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Same C: 10° X Improvement

That same 1 barrel could be used to make the
plastic needed for thin-film solar cells.

© sourc nknown. All r ght erved. This content xcluded from our Creative
Commons I eeeeee . For more in formati eeeeee http://ocw. mt edu/help/fag- f se/.

The solar cells could generate ~16,000 MWh of

energy over their lifetime, or 10,000 X as much.
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Energy Levels and
Basis Sets

Let’s pause and feel our oneness with these things.



Energy Levels
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Energy Levels
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Review: Basis functions
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Basis Set Convergence

When is a basis set converged!?

* Many basis sets have been
made for different elements.*
* You can make your own one
Basis too.
S e This can lead to big tables
(but chemists love big tables!).

Energy

J X

65 Q T D

* see, e.g., bse.pnl.gov



Basis Set Convergence
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What else?

After the basis set is converged, is
the calculation “right™?

example: what is the most stable structure of 20 carbon atoms!?
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Back to our first
application example: Solar
Chemical Fuels




Solar-Chemical :
Heat stored in chemical bonds
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A novel approach to solar
thermal fuels

There are many, many photoactive
molecules...

...that are terrible solar thermal fuels.

E/Z-
Stilbene

Can we turn them into good ones?



linker azobenzene

carbon nanotube

Role of the CNT template
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Intermolecular Separation (A)

Rigid substrate — fixes inter-molecular
distances over long range, enabling:

= steric inhibition

= t-stacking

= hydrophobic interactions

Enables design of specific
intermolecular interactions — not
available in free azobenzene




New Materials for Solar
Thermal Fuels




So Why do We Need QM?

excited state

Solar Radiation Spectrum
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In-Class Calculations of
Solar Thermal Fuels

Key Concept: Density of
States (DOS)



From The Band Gap to
Storage Efficiency

* Assume that all photons that have higher energy than the
band gap get absorbed by the molecule AND lead to photo-
Isomerization.

* Let the fraction of molecules in the excited state (cis state)
be x.

* Then, for a solar spectrum Il(lamda):

Amaa:,cis Amam,t’r'ans
2 / I(\)dA = (1 — ) / T(\)dA
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From Absorption Spectra
to Storage Efficiency

* Assume that all absorbed photons lead to photo-
Isomerization.

* Let the fraction of molecules in the excited state (cis state)
be x.

* Then, for a solar spectrum I(lamda):

I(\ I(\
x/abscis()\)(%id)\ = (1 —x)/abstmns()\)(%id)\

But how do we get this “abs” function?
--> from the energy levels!!



Summary/Reading

® What is convergence in a Quantum Mechanical
Calculation!?

® Feeling for what those energy levels mean!

® Connection of energy levels to light absorption,
and connection of that to charging efficiency in
solar fuels.

Y ¢¢

® Extra reading: google “atomic orbitals,” “molecular

orbital theory,’ etc.

® A bit on hydrogen storage.
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