1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011

Part I – Continuum and particle methods

Reactive potentials and applications (cont'd)

Lecture 9

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

Content overview

I. Particle and continuum methods

Lectures 2-13

- 1. Atoms, molecules, chemistry
- 2. Continuum modeling approaches and solution approaches
- Statistical mechanics
- 4. Molecular dynamics, Monte Carlo
- 5. Visualization and data analysis
- 6. Mechanical properties application: how things fail (and how to prevent it)
- 7. Multi-scale modeling paradigm
- 8. Biological systems (simulation in biophysics) how proteins work and how to model them

II. Quantum mechanical methods

- Lectures 14-26
- 1. It's A Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-Particle
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

Overview: Material covered so far...

- Lecture 1: Broad introduction to IM/S
- Lecture 2: Introduction to atomistic and continuum modeling (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- Lecture 3: Basic statistical mechanics property calculation I (property calculation: microscopic states vs. macroscopic properties, ensembles, probability density and partition function)
- Lecture 4: Property calculation II (Monte Carlo, advanced property calculation, introduction to chemical interactions)
- Lecture 5: How to model chemical interactions I (example: movie of copper deformation/dislocations, etc.)
- Lecture 6: How to model chemical interactions II (EAM, a bit of ReaxFF—chemical reactions)
- Lecture 7: Application MD simulation of materials failure
- Lecture 8: Application Reactive potentials and applications
- Lecture 9: Application Reactive potentials and applications (cont'd)

Lecture 9: Reactive potentials and applications (cont'd)

Outline:

- 1. Notes on fracture application
- 2. Closure: ReaxFF force field
- 3. Hybrid multi-paradigm fracture models

Goal of today's lecture:

- Remarks: Modeling of fracture and relation to diffusion problem
- New potential: ReaxFF, to describe complex chemistry (bond breaking and formation)
- Application in hybrid simulation approaches (combine different force fields)

1. Notes on fracture application

Consider for pset #2

Brittle fracture mechanisms: fracture is a multiscale phenomenon, from nano to macro

Reprinted by permission from Macmillan Publishers Ltd: *Nature*. Source: Buehler, M., and Z. Xu. "Materials Science: Mind the Helical Crack." *Nature* 464, no. 7285 (2010): 42-3. © 2010.

Limiting speeds of cracks: linear elastic continuum theory

$$c_{l} = \sqrt{\frac{9}{8}} \frac{E}{\rho} \sim \sqrt{E}$$

$$c_{s} = \sqrt{\frac{3}{8}} \frac{E}{\rho} \sim \sqrt{E}$$

$$c_{r} = 0.92c_{s}$$

Image by MIT OpenCourseWare.

- Cracks can not exceed the limiting speed given by the corresponding wave speeds unless material behavior is nonlinear
- Cracks that exceed limiting speed would produce energy (physically impossible - *linear elastic continuum theory*)

Subsonic and supersonic fracture

- Under certain conditions, material nonlinearities (that is, the behavior of materials under large deformation = hyperelasticity) becomes important
- This can lead to different limiting speeds than described by the model introduced above

Image by MIT OpenCourseWare.

$$c_l = \sqrt{\frac{9}{9}} \frac{E}{E} \sim \sqrt{E}$$

 $E_{\mathsf{small}(\mathsf{soft})}$

Energy flux concept

Energy flux reduction/enhancement

Image by MIT OpenCourseWare.

 $L_{
m energy}$

Energy flux related to wave speed: high local wave speed, high energy flux, crack can move faster (and reverse for low local wave speed)

Physical basis for subsonic/supersonic fracture

- Changes in energy flow at the crack tip due to changes in local wave speed (energy flux higher in materials with higher wave speed)
- Controlled by a characteristic length scale

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Buehler, M., F. Abraham, and H. Gao. "Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale." *Nature* 426 (2003): 141-6. © 2003.

Diffusion problem

Fracture problem

Continuum approach (distinct PDE)

$$\begin{array}{lll} \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} + \rho(g_1 - a_1) & = & 0 \\ \frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} + \rho(g_2 - a_2) & = & 0 \\ \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} + \rho(g_3 - a_3) & = & 0 \end{array}$$

PDE (continuum equilibrium)

$$c_l = \sqrt{\frac{3\mu}{\rho}} \qquad c_s = \sqrt{\frac{\mu}{\rho}}$$

$$c_R \approx \beta c_s$$
 $\beta \approx 0.923$

Crack limiting speed

Atomistic approach (same PDE)

 $f = m \frac{d^2x}{dt^2} = ma$

Integration (BCs, ICs)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Characteristic time of diffusion

Integration (BCs, ICs)

Crack limiting speed

2. Closure: ReaxFF force field

Potential energy expressions for more complex materials/chemistry, including bond formation and breaking

Review: atomic interactions – different types of chemical bonds

- Primary bonds ("strong")
 - Ionic (ceramics, quartz, feldspar rocks)
 - Covalent (silicon)
 - Metallic (copper, nickel, gold, silver) (high melting point, 1000-5,000K)
- Secondary bonds ("weak")
 - Van der Waals (wax, low melting point)
 - Hydrogen bonds (proteins, spider silk) (melting point 100-500K)
- Ionic: Non-directional (point charges interacting)
- Covalent: Directional (bond angles, torsions matter)
- Metallic: Non-directional (electron gas concept)

Difference of material properties originates from different atomic interactions

But...are all bonds the same? - valency in hydrocarbons

Bonds depend on the environment!

Another challenge: chemical reactions

Simple pair potentials can not describe chemical reactions

Why can not model chemical reactions with spring-like potentials?

$$\phi_{\text{stretch}} = \frac{1}{2} k_{\text{stretch}} (r - r_0)^2$$

Set of parameters only valid for particular molecule type / type of chemical bond

$$k_{\text{stretch},sp^2} \neq k_{\text{stretch},sp^3}$$

Reactive potentials or reactive force fields overcome these limitations

Theoretical basis: bond order potential

Concept: Use pair potential that depends on atomic environment (similar to EAM, here applied to covalent bonds)

$$\phi(r_{ij}) = \phi_{R}(r_{ij}) - M_{ij}\phi_{A}(r_{ij})$$

$$\downarrow$$

$$M_{ij} \sim Z^{-\delta}$$

Modulate strength of attractive part (e.g. by coordination, or "bond order")

Image by MIT OpenCourseWare.

 $k(r) \sim k_0 M_{ij}(Z, \delta)$

Changes in spring constant as function of bond order Continuous change possible

= continuous energy landscape during chemical reactions

Theoretical basis: bond order potential

Image by MIT OpenCourseWare.

D. Brenner, 2000

Concept of bond order (BO)

Bond order based energy landscape

Bond order potential
Allows for a more general
description of chemistry
All energy terms dependent
on bond order

Conventional potential (e.g. LJ, Morse)

Historical perspective of reactive bond order potentials

- 1985: Abell: General expression for binding energy as a sum of near nieghbor pair interactions moderated by local atomic environment
- 1990s: Tersoff, Brenner: Use Abell formalism applied to silicon (successful for various solid state structures)
- 2000: Stuart et al.: Reactive potential for hydrocarbons
- 2001: Duin, Godddard et al.: Reactive potential for hydrocarbons "ReaxFF"
- 2002: Brenner et al.: Second generation "REBO" potential for hydrocarbons
- 2003-2005: Extension of ReaxFF to various materials including metals, ceramics, silicon, polymers and more in Goddard's group

Example: ReaxFF reactive force field

William A. Goddard III
California Institute of Technology

Courtesy of Bill Goddard. Used with permission.

Adri C.T. v. Duin California Institute of Technology

ReaxFF: A reactive force field

$$E_{system} = E_{bond} + E_{vdWaals} + E_{Coulomb} + E_{val,angle} + E_{tors}$$
 2-body 3-body 4-body
$$+ E_{over} + E_{under}$$
 multi-body

Total energy is expressed as the sum of various terms describing individual chemical bonds

All expressions in terms of bond order

All interactions calculated between ALL atoms in system...

No more atom typing: Atom type = chemical element

Example: Calculation of bond energy

$$E_{\textit{system}} = E_{\textit{bond}} + E_{\textit{vdWaals}} + E_{\textit{Coulomb}} + E_{\textit{val,angle}} + E_{\textit{tors}} + E_{\textit{over}} + E_{\textit{under}}$$

$$E_{\text{bond}} = -D_{\text{e}} \cdot \text{BO}_{ij} \cdot \exp \left[p_{\text{be},1} \left(1 - \text{BO}_{ij}^{p_{\text{be},1}} \right) \right]$$

Bond energy between atoms *i* and *j* does not depend on bond distance

Instead, it depends on bond order

Bond order functions

Fig. 2.21c in Buehler, Markus J. *Atomistic Modeling of Materials Failure*. Springer, 2008. © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

$$BO_{ij} = \exp\left[\alpha_{\sigma} \cdot \left(\frac{r_{ij}}{r_{0}}\right)^{\beta_{\sigma}}\right] + \exp\left[\alpha_{\pi} \cdot \left(\frac{r_{ij}^{\pi}}{r_{0}}\right)^{\beta_{\pi}}\right] + \exp\left[\alpha_{\pi\pi} \cdot \left(\frac{r_{ij}^{\pi\pi}}{r_{0}}\right)^{\beta_{\pi\pi}}\right]$$
Characteristic bond distance

All energy terms are expressed as a function of bond orders

Illustration: Bond energy

$$E_{bond} = -D_e^{\sigma} \cdot BO_{ij}^{\sigma} \cdot f(BO_{ij}^{\sigma}) - D_e^{\pi} \cdot BO_{ij}^{\pi} - D_e^{\pi\pi} \cdot BO_{ij}^{\pi\pi}$$

Image removed due to copyright restrictions.

Please see slide 10 in van Duin, Adri. "Dishing Out the Dirt on ReaxFF." http://www.wag.caltech.edu/home/duin/FFgroup/Dirt.ppt.

vdW interactions

$$E_{\textit{system}} = E_{\textit{bond}} + E_{\textit{vdWaals}} + E_{\textit{Coulomb}} + E_{\textit{val,angle}} + E_{\textit{tors}} + E_{\textit{over}} + E_{\textit{under}}$$

- Accounts for short distance repulsion (Pauli principle orthogonalization) and attraction energies at large distances (dispersion)
- Included for all atoms with shielding at small distances

$$\begin{split} E_{\text{vdWaals}} &= D_{ij} \cdot \left\{ \exp \left[\alpha_{ij} \cdot \left(1 - \frac{f_{13}(r_{ij})}{r_{\text{vdW}}} \right) \right] - 2 \cdot \right. \\ &\left. \left. \exp \left[\frac{1}{2} \cdot \alpha_{ij} \cdot \left(1 - \frac{f_{13}(r_{ij})}{r_{\text{vdW}}} \right) \right] \right\} \\ &\left. f_{13}(r_{ij}) = \left[r_{ij}^{\lambda_{29}} + \left(\frac{1}{\lambda_{...}} \right)^{\lambda_{28}} \right]^{1/\lambda_{28}} \end{split}$$

Image removed due to copyright restrictions. Please see slide 11 in van Duin, Adri. "Dishing Out the Dirt on ReaxFF." http://www.wag.caltech.edu/home/duin/FFgroup/Dirt.ppt.

Resulting energy landscape

Contribution of E_{bond} and vdW energy

Source: van Duin, C. T. Adri, et al. "ReaxFF: A Reactive Force Field for Hydrocarbons." *Journal of Physical Chemistry A* 105 (2001). © American Chemical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Current development status of ReaxFF

: not currently described by ReaxFF

Allows to interface metals, ceramics with organic chemistry: Key for complex materials, specifically biological materials

Mg-water interaction: How to make fire with water

Video stills removed due to copyright restrictions; watch the video now: http://www.youtube.com/watch?v=QTKivMVUcqE.

Mg – water interaction – ReaxFF MD simulation

3. Hybrid multi-paradigm fracture models

Focus: model particular fracture properties of silicon (chemically complex material)

Fracture of silicon: problem statement

34

Multi-paradigm concept for fracture

accuracy & "**transferability**"

Increased

What about combining different potentials?

- Empirical models: mathematical functions with parameters (fitted to experiment or quantum mechanics)
 - Pair potentials (LJ, Morse, Buck., harmonic) (lecture 5)
 - Embedded atom models/effective medium theories
 - Multi-body potentials (e.g. Tersoff, CHARMM, etc.)
 (lecture 9 and following)
 - Reactive potentials (ReaxFF) (lecture 9) ←
- Semi-empirical models (explicitly note electronic structure)
 - Tight binding
 - MINDO (=Modified Intermediate Neglect of Differential Overlap), NINDO (=Intermediate Neglect of Differential Overlap)
- Quantum mechanical models: Start from Schroedinger's equation (and make approximations to be able to solve it)
 - Quantum chemistry (Hartree-Fock)
 - Density Functional Theory
 - Quantum Monte Carlo

-"good" for elastic properties (energy storage)

"good" for describing rupture of chemical bonds

"multi-paradigm model"

After: G. Ceder

36

Concept: concurrent multi-paradigm simulations

Crack tips, defects (dislocations)

Interfaces (oxidation, grain boundaries,..)

- Multi-paradigm approach: combine different computational methods (different resolution, accuracy..) in a single computational domain
- Decomposition of domain based on suitability of different approaches
- **Example**: concurrent FEatomistic-ReaxFF scheme in a crack problem (crack tip treated by ReaxFF) and an interface problem (interface treated by ReaxFF).

Concurrent multi-paradigm simulations: link nanoscale to macroscale

Concurrent coupling: use of multiple force fields within one simulation domain

Simulation Geometry: Cracking in Silicon

- Consider a crack in a silicon crystal under mode I loading.
- Periodic boundary conditions in the *z*-direction (corresponding to a plane strain case).

Cracking in Silicon: Hybrid model versus Tersoff based model

Image by MIT OpenCourseWare.

Conclusion: Pure Tersoff can not describe correct crack dynamics

How is the handshaking achieved?

Hybrid potential energy model (Hamiltonian)

Weights = describe how much a particular FF counts (assigned to each atom)

To obtain forces:

$$F = -\frac{\partial U_{tot}(x)}{\partial x}$$

need potential energy

Image by MIT OpenCourseWare.

Approach: handshaking via mixed Hamiltonians

$$U_{tot} = U_{\text{ReaxFF}} + U_{\text{Tersoff}} + U_{\text{ReaxFF-Tersoff}}$$

Assigning weights to atoms

Image by MIT OpenCourseWare.

Percentage ReaxFF
Percentage Tersoff
(relative contribution to total energy)

100% ... 100% 70% 30% 0% ... 0% 0% ... 0% 30% 70% 100% ... 100%

Force calculation

Potential energy

$$U_{tot} = U_{\text{ReaxFF}} + U_{\text{Tersoff}} + U_{\text{ReaxFF-Tersoff}}$$

$$U_{\text{ReaxFF-Tersoff}} = w_{\text{ReaxFF}}(x)U_{\text{ReaxFF}} + (1 - w_{\text{ReaxFF}})U_{\text{Tersoff}}$$

$$W_1$$
 W_2
 W_1
 W_2
 W_1
 W_2
 W_3
 W_4
 W_5
 W_6
 W_8
 W_8
 W_8
 W_9
 W_9
 W_1
 W_9
 W_1
 W_1
 W_2
 W_1
 W_2
 W_1
 W_2
 W_3
 W_4
 W_1
 W_1
 W_2
 W_1
 W_2
 W_1
 W_2
 W_1
 W_2
 W_1
 W_2
 W_3
 W_4
 W_1
 W_2
 W_1
 W_2
 W_3
 W_4
 W_5
 W_7
 W_8
 W_9
 W_9

Recall: $F = -\frac{\partial U}{\partial x}$

$$-\frac{\partial \mathcal{C}}{\partial x}$$

Image by MIT OpenCourseWare.

$$w_{\text{ReaxFF}}(x) + w_{\text{Tersoff}}(x) = 1 \quad \forall x$$

 $w_{\rm ReaxFF}$ is the weight of the reactive force field in the handshaking region.

$$F_{\text{ReaxFF-Tersoff}} = -\left[\left(w_{\text{ReaxFF}}(x) F_{\text{ReaxFF}} + (1 - w_{\text{ReaxFF}}) F_{\text{Tersoff}} \right) - \frac{\partial w_{\text{ReaxFF}}}{\partial x} \left(U_{\text{ReaxFF}} - U_{\text{Tersoff}} \right) \right]$$

D. Sen and M. Buehler, Int. J. Multiscale Comput. Engrg., 2007

Hybrid Hamiltonians – force calculation

$$F_{\text{ReaxFF-Tersoff}} = -\left[\left(w_{\text{ReaxFF}}(x) F_{\text{ReaxFF}} + (1 - w_{\text{ReaxFF}}) F_{\text{Tersoff}} \right) - \frac{\partial w_{\text{ReaxFF}}}{\partial x} \left(U_{\text{ReaxFF}} - U_{\text{Tersoff}} \right) \right] \approx 0$$

Slowly varying weights (wide transition region): $\partial w_{\text{ReaxFF}} / \partial x \approx 0$

If $U_{\text{ReaxFF}} - U_{\text{Tersoff}} \approx 0$ (i.e., both force fields have similar energy landscape)

Simplified result: can interpolate forces from one end to the other

$$F_{\text{ReaxFF-Tersoff}} = \left(w_{\text{ReaxFF}}(x) F_{\text{ReaxFF}} + (1 - w_{\text{ReaxFF}}) F_{\text{Tersoff}} \right) \quad w_{\text{ReaxFF}}(x) + w_{\text{Tersoff}}(x) = 1 \quad \forall x$$

Energy landscape of two force fields

Summary: hybrid potential energy model

Image by MIT OpenCourseWare.

$$F_{\text{ReaxFF-Tersoff}} = (w_{\text{ReaxFF}}(x)F_{\text{ReaxFF}} + (1 - w_{\text{ReaxFF}})F_{\text{Tersoff}})$$

$$W_{\text{ReaxFF}}(x) + W_{\text{Tersoff}}(x) = 1 \quad \forall x$$

Fracture of silicon single crystals

Use multi-paradigm scheme that combines the Tersoff potential and ReaxFF

Image by MIT OpenCourseWare.

Quantitative comparison w/ experiment

Fig. 1c in Buehler, M., et al. "Threshold Crack Speed Controls Dynamical Fracture of Silicon Single Crystals." *Physical Review Letters* 99 (2007). © APS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Load: normalized by critical energy release rate to initiate fracture

Crack dynamics

Image removed due to copyright restrictions. Please see: Fig. 2 in Buehler, M., et al. "Threshold Crack Speed Controls Dynamical Fracture of Silicon Single Crystals." *Physical Review Letters* 99 (2007).

Crack speed: O(km/sec)

=O(nm/ps) (well in reach with MD)

Atomistic fracture mechanism

Fracture initiation and instabilities

Fracture mechanism: tensile vs. shear loading

Image by MIT OpenCourseWare.

Shear (mode II) loading: Crack branching

Tensile (mode I) loading: Straight cracking

Fracture mechanism: tensile vs. shear loading

Shear (mode II) loading: Crack branching Tensile (mode I) loading: Straight cracking

Image by MIT OpenCourseWare.

Images removed due to copyright restrictions.

Please see figures in Buehler, M. J., A. Cohen, and D. Sen. "Multi-paradigm Modeling of Fracture of a Silicon Single Crystal Under Mode II Shear Loading." *Journal of Algorithms and Computational Technology* 2 (2008): 203-21.

Summary: main concept of this section

- Can combine different force fields in a single computational domain = multi-paradigm modeling
- Enables one to combine the strengths of different force fields
- Simple approach by interpolating force contributions from individual force fields, use of weights (sum of weights = 1 at all points)
- ReaxFF based models quite successful, e.g. for describing fracture in silicon, quantitative agreement with experimental results

 $3.021 J\,/\,1.021 J\,/\,10.333 J\,/\,18.361 J\,/\,22.00 J$ Introduction to Modeling and Simulation Spring 2012

For information about citing these materials or our Terms of use, visit http://ocw.mit.edu/terms.