1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011

Part I – Continuum and particle methods

Property calculation II

Lecture 4

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

Content overview

I. Particle and continuum methods

Lectures 2-13

- 1. Atoms, molecules, chemistry
- 2. Continuum modeling approaches and solution approaches
- Statistical mechanics
- 4. Molecular dynamics, Monte Carlo
- 5. Visualization and data analysis
- 6. Mechanical properties application: how things fail (and how to prevent it)
- 7. Multi-scale modeling paradigm
- 8. Biological systems (simulation in biophysics) how proteins work and how to model them

II. Quantum mechanical methods

- Lectures 14-26
- 1. It's A Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-Particle
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

Overview: Material covered so far...

- Lecture 1: Broad introduction to IM/S
- Lecture 2: Introduction to atomistic and continuum modeling (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- Lecture 3: Basic statistical mechanics property calculation I (property calculation: microscopic states vs. macroscopic properties, ensembles, probability density and partition function)
- Lecture 4: Property calculation II (Advanced property calculation, introduction to chemical interactions, Monte Carlo methods)

Lecture 4: Property calculation II

Outline:

- 1. Advanced analysis methods: Radial distribution function (RDF)
- 2. Introduction: How to model chemical interactions
 - 2.1 How to identify parameters in a Lennard-Jones potential
- 3. Monte-Carlo (MC) approach: Metropolis-Hastings algorithm
 - 3.1 Application to integration
 - 3.2 Metropolis-Hastings algorithm

Goal of today's lecture:

- Learn how to analyze structure of a material based on atomistic simulation result (solid, liquid, gas, different crystal structure, etc.)
- Introduction to potential or force field (Lennard-Jones)
- Present details of MC algorithm background and implementation

Advanced analysis methods: Radial distribution function (RDF)

Goals

- Define algorithms that enable us to "make sense" of positions, velocities etc. and time histories to relate with experimentally measurable quantities
- So far: temperature, MSD (mean square displacement function)
- Here: extend towards other properties

MD modeling of crystals - solid, liquid, gas phase

- Crystals: Regular, ordered structure
- The corresponding particle motions are small-amplitude vibrations about the lattice site, diffusive movements over a local region, and long free flights interrupted by a collision every now and then.
- Liquids: Particles follow Brownian motion (collisions)
- Gas: Very long free paths

Image by MIT OpenCourseWare. After J. A. Barker and D. Henderson.

Atomistic trajectory – through MSD

Need positions over time – what if not available?

How to characterize material state (solid, liquid, gas)

Application: Simulate phase transformation (melting)

Solid State

Ordered and dense Has a definite shape and volume. Solids are very slightly compressible.

Liquid State

Disordered and usually slightly less dense. Has a definite volume and takes the shape of the container. Liquids are slightly compressible.

Gas State

Disordered and much lower density than crystal or liquid. Does not have definite shape and volume.
Gases are highly compressible.

[©] Trivedi Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

How to characterize material state (solid, liquid, gas)

Regular spacing

Neighboring particles found at characteristic distances

Irregular spacing

Neighboring particles found at approximate distances (smooth variation)

More irregular spacing

More random distances, less defined

[©] Trivedi Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

How to characterize material state (solid, liquid, gas)

Regular spacing

Neighboring particles found at characteristic distances

Irregular spacing

Neighboring particles found at approximate distances (smooth variation)

More irregular spacing

More random distances, less defined

Concept:

- © Trivedi Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
- Measure distance of particles to their neighbors
- Average over large number of particles
- Average over time (MD) or iterations (MC)

Formal approach: Radial distribution function (RDF)

Ratio of density of atoms at distance r (in control area dr) by overall density = relative density of atoms as function of radius

Formal approach: Radial distribution function (RDF)

The radial distribution function is defined as

Overall density of atoms (volume) $g(r) = \rho(r)/\rho$ Local density

Provides information about the density of atoms at a given radius r; $\rho(r)$ is the local density of atoms

Formal approach: Radial distribution function (RDF)

The radial distribution function is defined as

Overall density of atoms (volume)

$$g(r) = \rho(r)/\rho$$

Provides information about the density of atoms at a given radius r; $\rho(r)$ is the local density of atoms

Discrete:

Number of atoms in the interval $r \pm \frac{\Delta r}{2}$

$$g(r) = \frac{\langle N(r \pm \frac{\Delta r}{2}) \rangle}{\Omega(r \pm \frac{\Delta r}{2})} \frac{1}{\rho}$$
 Volume of this shell (dr)

 $g(r)2\pi r^2 dr$ = Number of particles that lie in a spherical shell of radius *r* and thickness *dr*

Radial distribution function

Note: RDF can be measured experimentally using x-ray or neutron-scattering techniques

Radial distribution function:

Which one is solid / liquid?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Interpretation: A peak indicates a particularly

favored separation distance for the neighbors to a given particle Thus, RDF reveals details about the atomic structure of the system being simulated

Java applet:

http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html

Radial distribution function

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Interpretation: A peak indicates a particularly

favored separation distance for the neighbors to a given particle Thus, RDF reveals details about the atomic structure of the system being simulated

Java applet:

Radial distribution function: JAVA applet

Java applet:

http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html

Image removed for copyright reasons.

Screenshot of the radial distribution function Java applet.

Radial distribution function: Solid versus liquid versus gas

Image by MIT OpenCourseWare.

Note: The first peak corresponds to the nearest neighbor shell, the second peak to the second nearest neighbor shell, etc.

In FCC: 12, 6, 24, and 12 in first four shells

Notes: Radial distribution function (RDF)

- Pair correlation function (consider only pairs of atoms)
- Provides structural information
- Can provide information about dynamical change of structure, but not about transport properties (how fast atoms move)

Notes: Radial distribution function (RDF)

- Pair correlation function (consider only pairs of atoms)
- Provides structural information
- Can provide information about dynamical change of structure, but not about transport properties (how fast atoms move)

Additional comments:

- Describes how on average atoms in a system are radially packed around each other
- Particularly effective way of describing the structure of disordered molecular systems (liquids)
- In liquids there is continual movement of the atoms and a single snapshot of the system shows only the instantaneous disorder it is extremely useful to be able to deal with the average structure

Example RDFs for several materials

RDF and crystal structure

Image by MIT OpenCourseWare.

Peaks in RDF characterize NN distance, can infer from RDF about crystal structure

Face centered cubic (FCC), body centered cubic (BCC)

Image from Wikimedia Commons, http://commons.wikimedia.org

Aluminum, NN: 2.863 Å $(a_0$ =4.04 Å)

Copper, NN: 2.556 Å $(a_0=3.615 \text{ Å})$

Chromium, NN: 2.498 Å (a_0 =2.91 Å)

Iron, NN: 2.482 Å $(a_0=2.86 \text{ Å})$ 24

See also: http://www.webelements.com/

Hexagonal closed packed (HCP)

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image courtesy of the U.S. Navy.

Cobalt

a: 250.71 pm

b: 250.71 pm

c: 406.95 pm

a: 90.000°

β: 90.000°

γ: 120.000°

NN: 2.506 Å

Zinc

a: 266.49 pm

b: 266.49 pm

c: 494.68 pm

α: 90.000°

β: 90.000°

y: 120.000°

NN: 2.665 Å

Graphene/carbon nanotubes

Images removed due to copyright restrictions. Please see: http://weblogs3.nrc.nl/techno/wp-content/uploads/080424_Grafeen/Graphene_xyz.jpg http://depts.washington.edu/polylab/images/cn1.jpg

Graphene/carbon nanotubes (rolled up graphene)

NN: 1.42 Å, second NN 2.46 Å ...

Macroscale view of water

Iceberg

Image courtesy of blmiers2.

RDF of water (H₂O)

Courtesy of Mark Tuckerman. Used with permission.

RDF of water (H₂O)

Images courtesy of Mark Tuckerman. Used with permission.

RDF of water (H₂O)

Images courtesy of Mark Tuckerman. Used with permission.

2. Introduction: How to model chemical interactions

Molecular dynamics: A "bold" idea

$$r_i(t_0 + \Delta t) = -\underbrace{r_i(t_0 - \Delta t)}_{\text{Positions}} + \underbrace{2r_i(t_0)\Delta t}_{\text{Positions}} + \underbrace{a_i(t_0)\left(\Delta t\right)^2}_{\text{Accelerations}} + \dots$$

$$\text{Positions}_{\text{at } t_0 - \Delta t} \quad \text{Positions}_{\text{at } t_0} \quad \text{Accelerations}_{\text{at } t_0}$$

$$a_i = \underbrace{f_i}_{m}$$

Forces between atoms... how to obtain?

How are forces calculated?

Force magnitude: Derivative of potential energy with respect to atomic distance

$$f = -\frac{\mathrm{d}U(r)}{\mathrm{d}r}$$

To obtain force vector f_i , take projections into the three axial directions

$$\left(f_i = f \frac{x_i}{r}\right)$$

Often: Assume pair-wise interaction between atoms

Atomic interactions – quantum perspective

How electrons from different atoms interact defines nature of chemical bond

Density distribution of electrons around a H-H molecule

Image removed due to copyright restrictions. Please see the animation of hydrogen bonding orbitals at http://winter.group.shef.ac.uk/orbitron/MOs/H2/1s1s-sigma/index.html

Concept: Interatomic potential

Image by MIT OpenCourseWare.

"point particle" representation

Attraction: Formation of chemical bond by sharing of electrons **Repulsion:** Pauli exclusion (too many electrons in small volume)

Interatomic bond - model

Attraction: Formation of chemical bond by sharing of electrons **Repulsion**: Pauli exclusion (too many electrons in small volume)

Atomic interactions – different types of chemical bonds

- Primary bonds ("strong")
 - lonic (ceramics, quartz, feldspar rocks)
 - Covalent (silicon)
 - Metallic (copper, nickel, gold, silver) (high melting point, 1000-5,000K)
- Secondary bonds ("weak")
 - Van der Waals (wax, low melting point)
 - Hydrogen bonds (proteins, spider silk) (melting point 100-500K)
- Ionic: Non-directional (point charges interacting)
- Covalent: Directional (bond angles, torsions matter)
- Metallic: Non-directional (electron gas concept)

Difference of material properties originates from different atomic interactions

Interatomic pair potentials: examples

$$\phi(r_{ij}) = D \exp(-2\alpha(r_{ij} - r_0)) - 2D \exp(-\alpha(r_{ij} - r_0))$$

Morse potential

$$\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

Lennard-Jones 12:6 potential (excellent model for noble Gases, Ar, Ne, Xe..)

$$\phi(r_{ij}) = A \exp\left(-\frac{r_{ij}}{\sigma}\right) - C\left(\frac{\sigma}{r_{ij}}\right)^{6}$$

Buckingham potential

$$\phi(r_{ij}) = a_0 + \frac{1}{2}k(r_{ij} - r_0)^2$$

Harmonic approximation

What is the difference between these models?

Shape of potential (e.g. behavior at short or long distances, around equilibrium)

Number of parameters (to fit)

Ability to describe bond breaking

Lennard-Jones potential

Sir J. E. Lennard-Jones (Cambridge UK)

Lennard-Jones 12:6

Lennard-Jones potential: schematic & parameter meaning

 ε : well depth (energy stored per bond)

 σ : proportional to point where force vanishes (equilibrium distance between atoms)

Lennard-Jones 12:6

$$\phi(r) = 4\varepsilon \left(\left[\frac{\sigma}{r} \right]^{12} - \left[\frac{\sigma}{r} \right]^{6} \right)$$

2.1 How to identify parameters in a Lennard-Jones potential

(=force field training, force field fitting, parameter coupling, etc.)

Parameter identification for potentials

- Typically done based on more accurate (e.g. quantum mechanical) results (or experimental measurements, if available)
- Properties used include:

Lattice constant, cohesive bond energy, elastic modulus (bulk, shear, ...), equations of state, phonon frequencies (bond vibrations), forces, stability/energy of different crystal structures, surface energy, RDF, etc.

Potential should closely reproduce these reference values

Challenges: mixed systems, different types of bonds, reactions

Multi-scale paradigm

- Show earlier: molecular dynamics provides a powerful approach to relate the diffusion constant that appears in continuum models to atomistic trajectories
- Force field fitting to identify parameters for potentials (based on quantum mechanical results) is yet another "step" in this multi-scale paradigm

Derivative of LJ potential ~ force

relates to equilibrium spacing crystal

Properties of LJ potential as function of parameters \mathcal{E}, σ

Equilibrium distance between atoms r_0 and maximum force

first derivative zero (force)

second derivative zero (=loss of convexity, spring constant=0) Copper, NN: 2.556 Å (a₀=3.615 Å))

 $r_0 =$ distance of nearest neighbors in a lattice

Determination of parameters for atomistic interactions

- Example (based on elastic properties) of FCC lattice
- Approach: Express bulk modulus as function of potential parameters
 - Second derivative of potential is related to spring constant (=stiffness) of chemical bonds

Determination of parameters for atomistic interactions

- Example (based on elastic properties) of FCC lattice
- Approach: Express bulk modulus as function of potential parameters
 - Second derivative of potential is related to spring constant (=stiffness) of chemical bonds

Young's modulus
$$V = 1/4 - \text{Shear modulus}$$

$$K = E/(3(1-2v)) \qquad E = 8/3\mu \qquad \mu = r_0^2 k/2/V \qquad V = a_0^3/4$$

$$k = \frac{\partial^2 \phi(r)}{\partial r^2} = \phi' \qquad \phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

Determination of parameters for atomistic interactions

- Example (based on elastic properties) of FCC lattice
- Approach: Express bulk modulus as function of potential parameters
 - Second derivative of potential is related to spring constant (=stiffness) of chemical bonds

Lennard-Jones potential – example for copper

Image by MIT OpenCourseWare.

3. Monte Carlo approaches

How to solve...

$$< A >= \int \int A(p,r) \rho(p,r) dr dp$$

Probability density distribution

Virtually impossible to carry out analytically Must know all possible configurations

Therefore: Require numerical simulation

Molecular dynamics OR Monte Carlo

3.1 Application to integration

"Random sampling"

Monte Carlo scheme

Method to carry out integration over "domain"

Want:

$$A = \int_{\Omega} f(\vec{x}) d\Omega$$

E.g.: Area of circle (value of π)

$$A_C = \frac{\pi d^2}{4} \qquad A_C = \frac{\pi}{4}$$

$$\pi = 4A_C$$

$$d = 1$$

$$f(\vec{x}) = \begin{cases} 1 & \text{inside} \\ 0 & \text{outside} \end{cases}$$

Conventional way...

- Evaluate integrand at predetermined values in the domain (e.g. quadratic grid)
- Evaluate integral at discrete points and sum up

What about playing darts...

Public domain image.

Alternative way: integration through MC

Playing darts: Randomly select point in domain Evaluate integral a these points Sum up results to solve integral

Monte Carlo scheme for integration

- **Step 1**: Pick random point \vec{x}_i in Ω
- Step 2: Accept/reject point based on criterion (e.g. if inside or outside of circle and if in area not yet counted)
- Step 3: If accepted, add $f(\vec{x}_i) = 1$ to the total sum

$$A_{C} = \int_{\Omega} f(\vec{x}) d\Omega \qquad A_{C} = \frac{\pi}{16}$$

$$N_{A}: \text{ Attenmade}$$

$$A_{C} = \frac{1}{N_{A}} \sum_{i} f(\vec{x}_{i})$$

$$A_C = \frac{\pi}{16}$$

 N_{A} : Attempts made

$$A_C = \frac{1}{N_A} \sum_{i} f(\vec{x}_i)$$

Java applet: how to calculate pi

http://polymer.bu.edu/java/java/montepi/montepiapplet.html

Monte Carlo JAVA Applet

Est. pi

3.7

3.40000#00000000004

3.10000#0000000005

2.80000000000000000

Throw 1 Dart Reset 100 Darts 1000 Darts 10000 Darts Number of darts in circle: 92

Number of darts in square: 114

Estimate for pi: 3.228070175438

Courtesy of the Center for Polymer Studies at Boston University. Used with permission.

Example: more complicated shapes

How to apply to ensemble average?

- Similar method can be used to apply to integrate the ensemble average
- Need more complex iteration scheme (replace "random sampling" by "importance sampling")
- E.g. Metropolis-Hastings algorithm

Want:

$$\langle A \rangle = \iint_{p,r} A(p,r)\rho(p,r)drdp \iff \langle A \rangle \frac{1}{N_A} \sum_i A_i$$

Challenge: sampling specific types of distributions

- We want to
 - Integrate a sharply-peaked function
 - Use Monte Carlo with uniformly-distributed random numbers (e.g. here from -1 to 1)

$$f(x) = \exp\left(-\left(100x\right)^{12}\right)$$

Challenge: sampling specific types of distributions

- We want to
 - Integrate a sharply-peaked function
 - Use Monte Carlo with uniformly-distributed random numbers (e.g. here from -1 to 1)
- What happens?
 - Very few points contribute to the integral (~9%)
 - Poor computational efficiency/convergence
- Solution: use a different distribution of random numbers to sample "importance sampling"

3.2 Metropolis-Hastings algorithm

"Importance sampling"

Averaging over the ensemble

Property A₁

Property A₃

$$A_{\text{macro}} \neq \frac{1}{3} \left(A_1 + A_2 + A_3 \right)$$

Averaging over the ensemble

Instead, we must average with proper weights that represent the probability of a system in a particular microscopic state!

(I.e., not all microscopic states are equal)

$$A_{\text{macro}} = \rho_1 A_1 + \rho_2 A_2 + \rho_3 A_3 =$$

$$\rho_1(r_1, p_1) A_1(r_1, p_1) + \rho_2(r_2, p_2) A_2(r_2, p_2) + \rho_3(r_3, p_3) A_3(r_3, p_3)$$

Probability to find system in state C_1

How to apply to ensemble average?

 Similar method can be used to apply to integrate the ensemble average

$$< A >= \iint_{p} A(p,r)\rho(p,r)drdp$$

$$\rho(p,r) = \frac{1}{Q} \exp \left[-\frac{H(p,r)}{k_B T} \right]$$

"discrete"

$$< A > = \sum_{i=1}^{N_A} \frac{A \exp(-H(r_A, p_A)/(k_B T))}{\sum_{i=1}^{N_A} \exp(-H(r_A, p_A)/(k_B T))}$$

Computationally inefficient: If states are created "randomly" that have low probability....

 To be computationally more effective, need more complex iteration scheme (replace "random sampling" by "importance sampling")

Importance sampling

 Core concept: Picking states with a biased probability: Importance sampling (sampling the "correct" way...)

$$< A > = \sum_{i=1}^{N_A} \frac{A \exp(-H(r_A, p_A)/(k_B T))}{\sum_{i=1}^{N_A} \exp(-H(r_A, p_A)/(k_B T))}$$

$$< A > = \frac{1}{N_A} \sum_{i=1}^{N_A} A(r_A, p_A)$$

Corresponding to...

$$< A > = \frac{1}{3} (\rho_1 A_1 + \rho_2 A_2 + \rho_3 A_3) \longrightarrow < A > = \frac{1}{3} (A_1 + A_2 + A_3)$$

Importance sampling

 Core concept: Picking states with a biased probability: Importance sampling (sampling the "correct" way...)

$$\langle A \rangle = \iint_{p} A(p,r)\rho(p,r)drdp$$
 $\rho(p,r) = \frac{1}{Q} \exp\left[-\frac{H(p,r)}{k_B T}\right]$

Notice: Probability (and thus importance) related to energy of state

Importance sampling: Metropolis algorithm

 Leads to an appropriate "chain" of states, visiting each state with correct probability

- Concept:
 - Pick random initial state
 - Move to trial states
 - Accept trial state with certain probability (based on knowledge about behavior of system, i.e., energy states)

Metropolis-Hastings Algorithm

Concept: Generate set of random microscopic configurations Accept or reject with certain scheme

State A

State B

Random move to new state B

Metropolis-Hastings Algorithm: NVT

Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if H(B) < H(A) then a = 1

else

a = true[1]/false[0]
for acceptance

Draw random number 0

"Downhill" moves always accepted

Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if H(B) < H(A) then a = 1 else

a = true[1]/false[0]
for acceptance

Draw random number 0

"Downhill" moves always accepted, uphill moves with finite ("thermal") probability if $p < \exp\left[-\frac{H(B) - H(A)}{k_B T}\right]$ a = I

a = 0

endif

a=variable either 0 or 1 (used to detect acceptance

Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if
$$H(B) < H(A)$$
 then $a = 1$ else

a = true[1]/false[0]
for acceptance

Draw random number 0

if
$$p < \exp\left[-\frac{H(B) - H(A)}{k_B T}\right]$$
 $a = D$

$$a = 0$$

endif

enai

a=variable either 0 or 1 (used to detect acceptance of state B when a=1)

endif

Step 3: if (a = 1) then accept state B endif

Have: State
$$A$$
 (initial state) + energy function $H(A)$

Step 1: Generate new state B (random move)

Step 2: if
$$H(B) < H(A)$$
 then $a = 1$

else

repeat N_A times

a = true[1]/false[0]
for acceptance

Draw random number 0

Draw random number
$$0$$

if $p < \exp \left| -\frac{H(B) - H(A)}{k_B T} \right|$ a = I

-15C

endif

a=variable either 0 or 1 (used to detect acceptance of state B when a=1)

endif

Step 3: if a = 1 then accept state B

endif

$$< A > = \frac{1}{N_A} \sum_{i=1..N_A} A(i)$$

Arrhenius law - explanation

State B has higher energy than state A

Otherwise accepted anyway!

Arrhenius law - explanation

Energy difference between states A and B ("uphill")

Probability of success of overcoming the barrier at
$$\exp \left[-\frac{H(B) - H(A)}{k_B T} \right]$$
 temperature T

Arrhenius law - explanation

Probability
of success
of overcoming the
barrier

$$\exp\left[-\frac{H(B)-H(A)}{k_BT}\right]$$

Random number 0

(equal probability to draw any number between 0 and 1)

Acceptance if:

$$p < \exp\left[-\frac{H(B) - H(A)}{k_B T}\right]$$

E.g. when $\exp(..) = 0.8$ most choices for p will be below, that is, higher chance for acceptance

Play "1D darts"

Summary: Metropolis-Hastings Algorithm

Have: State
$$A$$
 (initial state) + energy function $H(A)$

Step 1: Generate new state B (random move)

Step 2: if
$$H(B) < H(A)$$
 then $a = 1$

else

repeat N_A times

a = true[1]/false[0]
for acceptance

Draw random number 0

if
$$p < \exp \left[-\frac{H(B) - H(A)}{k_B T} \right]$$
 $a = 1$

else

a = 0

endif

a=variable either 0 or 1 (used to detect acceptance of state B when a=1)

endif

Step 3: if a = 1 then accept state B endif

$$< A > = \frac{1}{N_A} \sum_{i=1..N_A} A(i)$$

Summary: MC scheme

Have achieved:

$$\langle A \rangle = \iint_{p} A(p,r)\rho(p,r)drdp$$
 \longleftrightarrow $\langle A \rangle \frac{1}{N_A} \sum_{i=1..N_A} A_i$

Note:

- Do not need forces between atoms (for accelerations)
- Only valid for equilibrium processes

Property calculation with MC: example

Other ensembles/applications

- Other ensembles carried out by modifying the acceptance criterion (in Metropolis-Hastings algorithm),
 e.g. NVT, NPT; goal is to reach the appropriate distribution of states according to the corresponding probability distributions
- Move sets can be adapted for other cases, e.g. not just move of particles but also rotations of side chains (=rotamers), torsions, etc.

E.g. application in protein folding problem when we'd like to determine the 3D folded structure of a protein in thermal equilibrium, *NVT*

Possible Monte Carlo moves

Trial moves

- Rigid body translation
- Rigid body rotation
- Internal conformational changes (soft vs. stiff modes)
- Titration/electronic states
- **-** ...

Questions:

- How "big" a move should we take?
- Move one particle or many?

Image by MIT OpenCourseWare.

Monte Carlo moves

- How "big" a move should we take?
 - Smaller moves: better acceptance rate, slower sampling
 - Bigger moves: faster sampling, poorer acceptance rate
- Move one particle or many?
 - Possible to achieve more efficient sampling with correct multiparticle moves
 - One-particle moves must choose particles at random

 $3.021 J\,/\,1.021 J\,/\,10.333 J\,/\,18.361 J\,/\,22.00 J$ Introduction to Modeling and Simulation Spring 2012

For information about citing these materials or our Terms of use, visit http://ocw.mit.edu/terms.