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Content overview

I. Particle and continuum methods
1. Atoms, molecules, chemistry
2. Continuum modeling approaches and solution approaches 
3. Statistical mechanics
4. Molecular dynamics, Monte Carlo
5. Visualization and data analysis 
6. Mechanical properties – application: how things fail (and 

how to prevent it)
7. Multi-scale modeling paradigm
8. Biological systems (simulation in biophysics) – how 

proteins work and how to model them

II. Quantum mechanical methods
1. It’s A Quantum World: The Theory of Quantum Mechanics
2. Quantum Mechanics: Practice Makes Perfect
3. The Many-Body Problem: From Many-Body to Single-

Particle
4. Quantum modeling of materials
5. From Atoms to Solids
6. Basic properties of materials
7. Advanced properties of materials
8. What else can we do? 

Lectures 2-13

Lectures 14-26
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Overview: Material covered so far…

Lecture 1: Broad introduction to IM/S

Lecture 2: Introduction to atomistic and continuum
modeling (multi-scale modeling paradigm, difference 
between continuum and atomistic approach, case study: 
diffusion)

Lecture 3: Basic statistical mechanics – property 
calculation I (property calculation: microscopic states 
vs. macroscopic properties, ensembles, probability 
density and partition function)

Lecture 4: Property calculation II (Advanced property 
calculation, introduction to chemical interactions, Monte 
Carlo methods)
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Lecture 4: Property calculation II

Outline:

1. Advanced analysis methods: Radial distribution function (RDF)
2. Introduction: How to model chemical interactions

2.1 How to identify parameters in a Lennard-Jones potential
3. Monte-Carlo (MC) approach: Metropolis-Hastings algorithm

3.1 Application to integration 
3.2 Metropolis-Hastings algorithm

Goal of today’s lecture: 

- Learn how to analyze structure of a material based on atomistic 
simulation result (solid, liquid, gas, different crystal structure, etc.)

- Introduction to potential or force field (Lennard-Jones) 
- Present details of MC algorithm – background and 

implementation 
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1. Advanced analysis methods: Radial 
distribution function (RDF) 
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Goals

Define algorithms that enable us to “make sense” of 
positions, velocities etc. and time histories to relate 
with experimentally measurable quantities

So far: temperature, MSD (mean square displacement 
function)

Here: extend towards other properties
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MD modeling of crystals – solid, liquid, gas phase

Crystals:  Regular, ordered 
structure

The corresponding particle 
motions are small-amplitude 
vibrations about the lattice site, 
diffusive movements over a local 
region, and long free flights 
interrupted by a collision every 
now and then.

Liquids: Particles follow Brownian 
motion (collisions)

Gas: Very long free paths

Image by MIT OpenCourseWare. After J. A. Barker and D. Henderson.
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Atomistic trajectory – through MSD

Need positions over time – what if not available? 

Courtesy of Sid Yip. Used with permission.
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How to characterize material state 
(solid, liquid, gas)

Application: Simulate phase transformation (melting)

http://www.t2i2edu.com/WebMovie/1Chap1_files/image002.jpg

© Trivedi Chemistry. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://www.t2i2edu.com/WebMovie/1Chap1_files/image002.jpg
http://ocw.mit.edu/fairuse
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How to characterize material state 
(solid, liquid, gas)

Regular spacing

Neighboring 
particles found at 
characteristic 
distances

Irregular spacing

Neighboring 
particles found at 
approximate 
distances (smooth 
variation)

More irregular 
spacing

More random 
distances, less 
defined

© Trivedi Chemistry. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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How to characterize material state 
(solid, liquid, gas)

Concept:
Measure distance of particles to their neighbors
Average over large number of particles
Average over time (MD) or iterations (MC)

Regular spacing

Neighboring 
particles found at 
characteristic 
distances

Irregular spacing

Neighboring 
particles found at 
approximate 
distances (smooth 
variation)

More irregular 
spacing

More random 
distances, less 
defined

© Trivedi Chemistry. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Reference 
atom

Formal approach: Radial distribution 
function (RDF)

ρρ /)()( rrg =

Ratio of density of atoms at distance r (in control area dr) by 
overall density = relative density of atoms as function of radius 

r

dr
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Formal approach: Radial distribution 
function (RDF)

ρρ /)()( rrg =

The radial distribution function is defined as

Local density

Overall density of atoms (volume)

Provides information about the density of atoms at a given 
radius r;  ρ(r) is the local density of atoms 
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Formal approach: Radial distribution 
function (RDF)

ρρ /)()( rrg =

The radial distribution function is defined as

Provides information about the density of atoms at a given 
radius r;  ρ(r) is the local density of atoms 

ρ
1

)(
)()(

2

2
r

r

r
rNrg

Δ

Δ

±Ω
>±<

=

=drrrg 22)( π Number of particles that lie in a spherical shell
of radius r and thickness dr 

Local density

Overall density of atoms (volume)

Volume of this shell (dr)

Number of atoms in the interval 2
rr Δ±Discrete:
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Radial distribution function

ρ)(
)()(

2

2
r

r

r
rNrg

Δ

Δ

±Ω
±

=

VN /=ρ
Density 

Note: RDF can be measured experimentally using x-ray or 
neutron-scattering techniques 

)( 2
rr Δ±Ω considered volume

2
rΔ
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Radial distribution function:  
Which one is solid / liquid?

Interpretation: A peak indicates a particularly
favored separation distance for the neighbors to a given particle
Thus, RDF reveals details about the atomic structure of the 
system being simulated
Java applet:
http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html
http://ocw.mit.edu/fairuse
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Radial distribution function

solid liquid

Interpretation: A peak indicates a particularly
favored separation distance for the neighbors to a given particle
Thus, RDF reveals details about the atomic structure of the 
system being simulated

Java applet:
http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html
http://ocw.mit.edu/fairuse
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Radial distribution function:  
JAVA applet

Java applet:
http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html

Image removed for copyright reasons.
Screenshot of the radial distribution function Java applet.

http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html
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Radial distribution function:  
Solid versus liquid versus gas

Note: The first peak corresponds to the nearest 
neighbor shell, the second peak to the second 
nearest neighbor shell, etc.

In FCC:  12, 6, 24, and 12 in first four shells

Image by MIT OpenCourseWare.
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Notes: Radial distribution function (RDF)

Pair correlation function (consider only pairs of atoms)
Provides structural information
Can provide information about dynamical change of 
structure, but not about transport properties (how fast 
atoms move)
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Notes: Radial distribution function (RDF)

Pair correlation function (consider only pairs of atoms)
Provides structural information
Can provide information about dynamical change of 
structure, but not about transport properties (how fast 
atoms move)

Additional comments:
Describes how - on average - atoms in a system are 
radially packed around each other 
Particularly effective way of describing the structure of 
disordered molecular systems (liquids)
In liquids there is continual movement of the atoms and 
a single snapshot of the system shows only the 
instantaneous disorder it is extremely useful to be able to 
deal with the average structure
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Example RDFs for several materials



2nd NN

3rd NN

…
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RDF and crystal structure
1st nearest neighbor (NN)

Peaks in RDF characterize NN distance, 
can infer from RDF about crystal structure

Image by MIT OpenCourseWare.



Face centered cubic (FCC), body centered 
cubic (BCC)

Aluminum, NN: 2.863 Å
(a0=4.04 Å) 

Copper, NN: 2.556 Å
(a0=3.615 Å) )

Chromium, NN: 
2.498 Å (a0=2.91 Å) 

Iron, NN: 2.482 Å
(a0=2.86 Å) 

See also: http://www.webelements.com/
24

Image from Wikimedia Commons, http://commons.wikimedia.org

http://www.webelements.com/
http://commons.wikimedia.org/
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Hexagonal closed packed (HCP)

Cobalt
a: 250.71 pm 
b: 250.71 pm 
c: 406.95 pm 
α: 90.000°
β: 90.000°
γ: 120.000°
NN: 2.506 Å

Zinc
a: 266.49 pm 
b: 266.49 pm 
c: 494.68 pm 
α: 90.000°
β: 90.000°
γ: 120.000°
NN: 2.665 Å

Image courtesy of the U.S. Navy.

Image by MIT OpenCourseWare.

a
a

a

c

Image by MIT OpenCourseWare.



26

Graphene/carbon nanotubes

Graphene/carbon nanotubes (rolled up graphene)
NN: 1.42 Å, second NN 2.46 Å …

RDF

Images removed due to copyright restrictions.
Please see: http://weblogs3.nrc.nl/techno/wp-
content/uploads/080424_Grafeen/Graphene_xyz.jpg
http://depts.washington.edu/polylab/images/cn1.jpg

http://weblogs3.nrc.nl/techno/wp-content/uploads/080424_Grafeen/Graphene_xyz.jpg
http://weblogs3.nrc.nl/techno/wp-content/uploads/080424_Grafeen/Graphene_xyz.jpg
http://depts.washington.edu/polylab/images/cn1.jpg
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Macroscale view of water
Iceberg

Glacier

Image courtesy of dnkemontoh. 

Image courtesy of blmiers2. 

http://www.flickr.com/photos/dnkemontoh/2680822579/
http://www.flickr.com/photos/blmiers2/6138452548/in/photostream/
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RDF of water (H2O)

http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_8/node1.html

Courtesy of Mark Tuckerman. Used with permission.

http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_8/node1.html
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RDF of water (H2O)
O-O distance

H-O distance

http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_8/node1.html

Images courtesy of Mark Tuckerman. Used with permission.

http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_8/node1.html
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RDF of water (H2O)
O-O distance

H-O distance

H-bonding
(≈2.8 Å)

H-O covalent bonding
(≈1 Å)

http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_8/node1.html

Images courtesy of Mark Tuckerman. Used with permission.

http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture_8/node1.html
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2. Introduction: How to model chemical 
interactions
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Molecular dynamics: A “bold” idea

( ) ...)()(2)()( 2
0000 +Δ+Δ+Δ−−=Δ+ ttattrttrttr iiii

Positions 
at t0

Accelerations
at t0

Positions 
at t0-Δt

mfa ii /=
Forces between atoms… how to obtain?
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r
rUf

d
)(d

−=

Force magnitude:  Derivative of potential energy with respect to
atomic distance

To obtain force vector fi, take projections into the 
three axial directions

r
xff i

i =
r

x1

x2f

Often:  Assume pair-wise interaction between atoms

How are forces calculated?
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Atomic interactions – quantum perspective

Much more about it in part II

How electrons from different atoms interact defines 
nature of chemical bond

Density distribution of electrons around a H-H molecule

Image removed due to copyright restrictions. Please see the animation of 
hydrogen bonding orbitals at 
http://winter.group.shef.ac.uk/orbitron/MOs/H2/1s1s-sigma/index.html

http://winter.group.shef.ac.uk/orbitron/MOs/H2/1s1s-sigma/index.html
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Concept: Interatomic potential

“point particle” representation

Attraction: Formation of chemical bond by sharing of electrons
Repulsion: Pauli exclusion (too many electrons in small volume)

Image by MIT OpenCourseWare.

e 

Energy U 
r 

Repulsion 

Attraction 

1/r12 (or Exponential) 

1/r6 

Radius r (Distance 
between atoms) 
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Interatomic bond - model

Attraction: Formation of chemical bond by sharing of electrons
Repulsion: Pauli exclusion (too many electrons in small volume)

Image by MIT OpenCourseWare. Image by MIT OpenCourseWare.

Harmonic oscillatorr0

φ

r~ k(r - r0)
2e 

Energy U 
r 

Repulsion 

Attraction 

1/r12 (or Exponential) 

1/r6 

Radius r (Distance 
between atoms) 
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Atomic interactions – different types of chemical bonds

Primary bonds (“strong”)
Ionic (ceramics, quartz, feldspar - rocks) 
Covalent (silicon) 
Metallic (copper, nickel, gold, silver)
(high melting point, 1000-5,000K)

Secondary bonds (“weak”)
Van der Waals (wax, low melting point) 
Hydrogen bonds (proteins, spider silk)
(melting point 100-500K)

Ionic: Non-directional (point charges interacting)
Covalent: Directional (bond angles, torsions matter)
Metallic: Non-directional (electron gas concept)

Difference of material properties originates from different atomic 
interactions
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Interatomic pair potentials: examples

Morse potential

Lennard-Jones 12:6 
potential
(excellent model for noble
Gases, Ar, Ne, Xe..)

Buckingham potential

Harmonic approximation
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What is the difference between these 
models?

Shape of potential (e.g. behavior at short or long distances, 
around equilibrium)

Number of parameters (to fit)
Ability to describe bond breaking
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Lennard-Jones potential

Lennard-Jones 12:6

Parameters
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Sir J. E. Lennard-Jones (Cambridge UK) 



41

Lennard-Jones potential: schematic & parameter 
meaning

φ

r

LJ 12:6
potential

Lennard-Jones 12:6

r ε

~σ

⎟
⎟
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⎜
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⎡−⎥⎦
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4)(
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ε :  well depth (energy stored 
per bond)

σ :  proportional to point where 
force vanishes (equilibrium 
distance between atoms)



42

2.1 How to identify parameters in a 
Lennard-Jones potential

(=force field training, force field fitting, 
parameter coupling, etc.)
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Parameter identification for potentials 

Typically done based on more accurate (e.g. quantum 
mechanical) results (or experimental measurements, if available)

Properties used include:

Lattice constant, cohesive bond energy, elastic modulus (bulk, 
shear, …), equations of state, phonon frequencies (bond 
vibrations), forces, stability/energy of different crystal 
structures, surface energy, RDF, etc. 

Potential should closely reproduce these reference values

Challenges: mixed systems, different types of bonds, reactions
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Quantum
mechanics

(part II)

Multi-scale paradigm
Show earlier: molecular dynamics provides a powerful approach to relate the 
diffusion constant that appears in continuum models to atomistic trajectories

Force field fitting to identify parameters for potentials (based on quantum 
mechanical results) is yet another “step” in this multi-scale paradigm

MD

Continuum
model

Length scale

Time scale
“Empirical”
or experimental
parameter
feedingforce field

fitting

diffusion
calculations
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Derivative of LJ potential ~ force

relates to equilibrium spacing crystal 

0.2

0.1

0

-0.1

-0.2
2 3 4 5r0

-d
φ/

d
r 

(e
V
/A

)
ο

r (A)
o

F = _ 
dφ(r)
dr

= -φ'

LJFmax,

rEQ

φ(r)

0

Image by MIT OpenCourseWare.



Properties of LJ potential as function of 
parameters 

Equilibrium distance between atoms r0 and maximum force

0
6 2 r=σ

σ
ε394.2

max, =LJF

first derivative 
zero (force)

second derivative 
zero (=loss of convexity, 
spring constant=0)

=0r distance of nearest neighbors in a lattice 0r

FCC

σε ,

Image from Wikimedia Commons, http://commons.wikimedia.org

http://commons.wikimedia.org/
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Determination of parameters for atomistic 
interactions

Example (based on elastic properties) of FCC lattice

Approach: Express bulk modulus as function of potential parameters
Second derivative of potential is related to spring constant
(=stiffness) of chemical bonds

Shear modulus
Young’s modulus

μ3/8=E))21(3/( ν−= EK

4/1=ν

Vkr /2/2
0=μ 4/3

0aV =
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Determination of parameters for atomistic 
interactions

Example (based on elastic properties) of FCC lattice

Approach: Express bulk modulus as function of potential parameters
Second derivative of potential is related to spring constant
(=stiffness) of chemical bonds
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493/64 σε=K

Determination of parameters for atomistic 
interactions

Example (based on elastic properties) of FCC lattice

Approach: Express bulk modulus as function of potential parameters
Second derivative of potential is related to spring constant
(=stiffness) of chemical bonds
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Bulk modulus copper E = 140 GPa



50

Lennard-Jones potential – example for copper

LJ potential – parameters for copper
Image by MIT OpenCourseWare.
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3. Monte Carlo approaches
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How to solve…

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

Probability density distribution

Virtually impossible to carry out analytically

Must know all possible configurations

Therefore: Require numerical simulation

Molecular dynamics OR Monte Carlo
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3.1 Application to integration 

“Random sampling”
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Monte Carlo scheme

∫
Ω

Ω= dxfA )(

Method to carry out integration over “domain”

Want:

E.g.: Area of circle 
(value of π)

4

2dAC
π

=
4
π

=CA 1=d

Ω

⎩
⎨
⎧

=
outside0
inside1

)(xf
CA4=π
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Conventional way…
Evaluate integrand at predetermined values in the domain (e.g. 
quadratic grid)
Evaluate integral at discrete points and sum up

Ω

…..
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What about playing darts..

Public domain image.



Alternative way: integration through MC

…..

Playing darts: Randomly select point in domain
Evaluate integral a these points
Sum up results to solve integral

57



58

Monte Carlo scheme for integration

Step 1: Pick random point        in 
Step 2: Accept/reject point based on criterion (e.g. if 
inside or outside of circle and if in area not yet counted)
Step 3: If accepted, add 
to the total sum

Ω

1)( =ixf

ix

∫
Ω

Ω= dxfAC )(

∑=
i

i
A

C xf
N

A )(1

http://math.fullerton.edu/mathews/n2003/MonteCarloPiMod.html

AN :  Attempts
made

16
π

=CA

Courtesy of John H. Mathews. Used with permission.

http://math.fullerton.edu/mathews/n2003/MonteCarloPiMod.html
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Java applet: how to calculate pi
http://polymer.bu.edu/java/java/montepi/montepiapplet.html

Courtesy of the Center for Polymer Studies 
at Boston University. Used with permission.

http://polymer.bu.edu/java/java/montepi/montepiapplet.html
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Example:  more complicated shapes

-4 -2 2 4

-4

-2

2

4

© N. Baker. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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How to apply to ensemble average?

Similar method can be used to apply to integrate the 
ensemble average
Need more complex iteration scheme (replace “random 
sampling” by “importance sampling”)

E.g. Metropolis-Hastings algorithm

drdprprpAA
p r
∫ ∫>=< ),(),( ρ ∑><

i
i

A

A
N

A 1
Want:
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Challenge: sampling specific types of 
distributions

We want to
Integrate a sharply-peaked 
function
Use Monte Carlo with 
uniformly-distributed 
random numbers (e.g. here 
from -1 to 1)

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

( ) ( )( )12exp 100f x x= −

Random numbers
drawn from here
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Challenge: sampling specific types of 
distributions

We want to
Integrate a sharply-peaked 
function
Use Monte Carlo with 
uniformly-distributed 
random numbers (e.g. here 
from -1 to 1)

What happens?
Very few points contribute 
to the integral (~9%)
Poor computational 
efficiency/convergence

Solution: use a different 
distribution of random 
numbers to sample 
“importance sampling”

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

( ) ( )( )12exp 100f x x= −

Random numbers
drawn from here
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3.2 Metropolis-Hastings algorithm

“Importance sampling”
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Averaging over the ensemble

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=
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Averaging over the ensemble

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=

Instead, we must average with proper weights that represent the probability 
of a system in a particular microscopic state! 

(I.e., not all microscopic states are equal)

),(),(),(),(),(),( 333333222222111111

332211macro

prAprprAprprApr
AAAA

ρρρ
ρρρ

++
=++=

Probability to find system in state C1
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Similar method can be used to apply to integrate the 
ensemble average

To be computationally more effective, need more complex 
iteration scheme (replace “random sampling” by “importance 
sampling”)

How to apply to ensemble average?

⎥
⎦

⎤
⎢
⎣

⎡
−=

Tk
rpH

Q
rp

B

),(exp1),(ρ

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

( )( )

( )( )
∑

∑=

=

−

−
>=<

A

A

N

i
N

i
BAA

BAA

TkprH

TkprHAA
1

1

/),(exp

/),(exp

“discrete”

Computationally inefficient: If states 
are created “randomly” that have low 
probability….
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Importance sampling

Core concept: Picking states with a biased probability: 
Importance sampling (sampling the “correct” way…)

( )3213
1 AAAA ++>=<

( )( )

( )( )
∑

∑=

=

−

−
>=<

A

A

N

i
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i
BAA
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1

1
/),(exp

/),(exp

( )3322113
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∑
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Importance sampling

Core concept: Picking states with a biased probability: 
Importance sampling (sampling the “correct” way…)
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Notice: Probability (and thus importance)
related to energy of state
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Importance sampling: Metropolis algorithm

Leads to an appropriate “chain” of states, visiting each state 
with correct probability

Concept:

Pick random initial state
Move to trial states
Accept trial state with certain probability (based on 
knowledge about behavior of system, i.e., energy states)

Original reference: J. Chem. Phys. 21,1087, 1953 
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Metropolis-Hastings Algorithm

State A State B

Random move to 
new state B

Concept: Generate set of random microscopic configurations
Accept or reject with certain scheme
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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a = true/false
for acceptance 

“Downhill” moves always accepted, uphill moves
with finite (“thermal”) probability

a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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“Downhill” moves always accepted, uphill moves
with finite (“thermal”) probability

a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

“Downhill” moves 
always accepted

a = true[1]/false[0]
for acceptance 
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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“Downhill” moves always accepted, uphill moves
with finite (“thermal”) probability

a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

“Downhill” moves 
always accepted, 
uphill moves
with finite 
(“thermal”) 
probability

a = true[1]/false[0]
for acceptance 



75

Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

a = true[1]/false[0]
for acceptance 
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

repeat       times

Metropolis-Hastings Algorithm: NVT

∑
=

>=<
ANiA

iA
N

A
..1

)(1

AN
⎥
⎦

⎤
⎢
⎣

⎡ −
−<

Tk
AHBHp

B

)()(exp

a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

a = true[1]/false[0]
for acceptance 
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Arrhenius law - explanation

E
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Consider two states, A and B

A B

State B has higher energy than state A

Otherwise accepted anyway!
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Arrhenius law - explanation
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Arrhenius law - explanation
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E.g. when exp(..) = 0.8 most 
choices for p will be below, 
that is, higher
chance for acceptance

low barrier

high barrier0.1

Random number 0 < p < 1
(equal probability to draw any number between 0 and 1)

Acceptance if:

Probability
of success
of overcoming the 
barrier

Play “1D darts”

….
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

repeat       times

Summary: Metropolis-Hastings Algorithm
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a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

a = true[1]/false[0]
for acceptance 
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Summary: MC scheme
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Have achieved:

Note:
• Do not need forces between atoms (for accelerations)
• Only valid for equilibrium processes
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Property calculation with MC: example

A

Iteration
“MC time”

Averaging leads to “correct”
thermodynamical property

Error in Monte Carlo decreases as  NA
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Other ensembles/applications

Other ensembles carried out by modifying the 
acceptance criterion (in Metropolis-Hastings algorithm), 
e.g. NVT, NPT; goal is to reach the appropriate 
distribution of states according to the corresponding 
probability distributions

Move sets can be adapted for other cases, e.g. not just 
move of particles but also rotations of side chains
(=rotamers), torsions, etc. 

E.g. application in protein folding problem when we’d like 
to determine the 3D folded structure of a protein in 
thermal equilibrium, NVT

After: R.J. Sadus
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Possible Monte Carlo moves

Trial moves
Rigid body translation
Rigid body rotation
Internal conformational 
changes (soft vs. stiff modes)
Titration/electronic states
…

Questions:
How “big” a move should we 
take?
Move one particle or many?

After N. Baker (WUSTL)

Image by MIT OpenCourseWare.
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Monte Carlo moves

How “big” a move 
should we take?

Smaller moves: 
better acceptance 
rate, slower 
sampling
Bigger moves: 
faster sampling, 
poorer acceptance 
rate

Move one particle or 
many?

Possible to achieve 
more efficient 
sampling with 
correct multi-
particle moves
One-particle moves 
must choose 
particles at random Image by MIT OpenCourseWare.
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