1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation

Part I – Continuum and particle methods

Applications to biophysics and bionanomechanics (cont'd)

Lecture 11

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

Content overview

I. Particle and continuum methods

Lectures 2-13

- 1. Atoms, molecules, chemistry
- 2. Continuum modeling approaches and solution approaches
- Statistical mechanics
- 4. Molecular dynamics, Monte Carlo
- 5. Visualization and data analysis
- 6. Mechanical properties application: how things fail (and how to prevent it)
- 7. Multi-scale modeling paradigm
- 8. Biological systems (simulation in biophysics) how proteins work and how to model them

II. Quantum mechanical methods

- Lectures 14-26
- 1. It's A Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-Particle
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

Overview: Material covered so far...

- Lecture 1: Broad introduction to IM/S
- Lecture 2: Introduction to atomistic and continuum modeling (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- Lecture 3: Basic statistical mechanics property calculation I (property calculation: microscopic states vs. macroscopic properties, ensembles, probability density and partition function)
- Lecture 4: Property calculation II (Monte Carlo, advanced property calculation, introduction to chemical interactions)
- Lecture 5: How to model chemical interactions I (example: movie of copper deformation/dislocations, etc.)
- Lecture 6: How to model chemical interactions II (EAM, a bit of ReaxFF—chemical reactions)
- Lecture 7: Application to modeling brittle materials I
- Lecture 8: Application to modeling brittle materials II
- Lecture 9: Application Applications to materials failure
- Lecture 10: Applications to biophysics and bionanomechanics
- Lecture 11: Applications to biophysics and bionanomechanics (cont'd)

Lecture 11: Applications to biophysics and bionanomechanics (cont'd)

Outline:

- 1. Force fields for proteins: (brief) review
- 2. Fracture of protein domains Bell model
- 3. Examples materials and applications

Goal of today's lecture:

- Fracture model for protein domains: "Bell model"
- Method to apply loading in molecular dynamics simulation (nanomechanics of single molecules)
- Applications to disease and other aspects

1. Force fields for proteins: (brief) review

Chemistry, structure and properties are linked

Chemical structure

Presence of various chemical bonds:

- Covalent bonds (C-C, C-O, C-H, C-N..)
- Electrostatic interactions (charged amino acid side chains)
- H-bonds (e.g. between H and O)
- vdW interactions (uncharged parts of molecules)

Model for covalent bonds

Courtesy of the EMBnet Education & Training Committee. Used with permission.

Images created for the CHARMM tutorial by Dr. Dmitry Kuznetsov (Swiss Institute of Bioinformatics) for the EMBnet Education & Training committee (http://www.embnet.org)

Summary: CHARMM potential (pset #3)

$$U_{total} = U_{\text{Elec}} + U_{\text{Covalent}} + U_{\text{Metallic}} + U_{\text{vdW}} + U_{\text{H-bond}}$$

$$U_{\text{Elec}}$$
: Coulomb potential $\phi(r_{ij}) = \frac{q_i q_j}{\varepsilon_1 r_{ii}}$

$$U_{\text{Covalent}} = U_{\text{stretch}} + U_{\text{bend}} + U_{\text{rot}} \begin{cases} \phi_{\text{stretch}} = \frac{1}{2} k_{\text{stretch}} (r - r_0)^2 \\ \phi_{\text{bend}} = \frac{1}{2} k_{\text{bend}} (\theta - \theta_0)^2 \\ \phi_{\text{rot}} = \frac{1}{2} k_{\text{rot}} (1 - \cos(\theta)) \end{cases}$$

$$U_{\mathrm{vdW}}$$
: LJ potential $\phi(r_{ij}) = 4\varepsilon \left| \left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right|$

$$U_{\text{H-bond}}: \quad \phi(r_{ij}) = D_{\text{H-bond}} \left| 5 \left(\frac{R_{\text{H-bond}}}{r_{ij}} \right)^{12} - 6 \left(\frac{R_{\text{H-bond}}}{r_{ij}} \right)^{10} \right| \cos^4(\theta_{\text{DHA}})$$

2. Fracture of protein domains – Bell model

Experimental techniques

How to apply load to a molecule

(in molecular dynamics simulations)

Steered molecular dynamics (SMD)

Steered molecular dynamics used to apply forces to protein structures

Steered molecular dynamics (SMD)

Steered molecular dynamics used to apply forces to protein structures

$$f = k(v \cdot t - x)$$

$$\vec{v} \cdot t - \vec{x}$$

end

point of

molecule

SMD spring constant

$$\vec{f} = \vec{k}(\vec{v} \cdot t - \vec{x})$$

time

Distance between end point of molecule and virtual atom

SMD deformation speed vector

****13

SMD mimics AFM single molecule experiments

Atomic force microscope

SMD is a useful approach to probe the nanomechanics of proteins (elastic deformation, "plastic" – permanent deformation, etc.)

Example: titin unfolding (CHARMM force field)

Unfolding of titin molecule

Protein unfolding - ReaxFF

ReaxFF modeling

Protein unfolding - CHARMM

CHARMM modeling

Comparison – CHARMM vs. ReaxFF

Application to alpha-helical proteins

Vimentin intermediate filaments

Image courtesy of Bluebie Pixie on Flickr. License: CC-BY.

license. For more information, see http://ocw.mit.edu/fairuse.

Source: Oin, Z., L. Kreplak, and M. Buehler. "Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments." PLoSONE 4, no. 10 (2009). doi:10.1371/journal.pone.0007294. License CC BY.

Alpha-helical protein: stretching

A: First H-bonds break (turns open)

B: Stretch covalent backbone

C: Backbone breaks

Coarse-graining approach

Describe interaction between "beads" and not "atoms"

Same concept as force fields for atoms

$$U(\vec{R}) = U_T + U_B,$$

$$U_T = \sum_{pairs} \phi_T(r)$$
 and $U_B = \sum_{angles} \phi_B(\varphi)$.

$$\phi_B(\varphi) = \frac{1}{2} K_B(\varphi - \varphi_0)^2$$

$$\frac{\partial \phi_T}{\partial r}(r) = H(r_{break} - r) \begin{cases} k_T^{(1)}(r - r_0) & r_1 > r \\ R_1 + k_T^{(2)}(r - r_1) & r_1 \le r < r_2 \\ R_2 + R_1 + k_T^{(3)}(r - r_2) & r_2 \le r < r_3 \\ R_3 + R_2 + R_1 + k_T^{(4)}(r - r_3) & r_3 \le r \end{cases}.$$

See also: http://dx.doi.org/10.1371/journal.pone.0006015

Case study: From nanoscale filaments to micrometer meshworks

Movie: MD simulation of AH coiled coil

Image removed due to copyright restrictions. Please see http://dx.doi.org/10.1103/PhysRevLett.104.198304.

See also: Z. Qin, ACS Nano, 2011, and Z. Qin BioNanoScience, 2010.

What about varying pulling speeds?

Changing the time-scale of observation of fracture

Variation of pulling speed

Image by MIT OCW. After Ackbarow and Buehler, 2007.

Force at angular point f_{AP} =fracture force

General results...

Rupture force vs. pulling speed

Reprinted by permission from Macmillan Publishers Ltd: Nature Materials.

Source: Buehler, M., and Yung, Y. "Chemomechanical Behaviour of Protein Constituents." *Nature Materials* 8, no. 3 (2009): 175-88. © 2009.

How to make sense of these results?

A few fundamental properties of bonds

- Bonds have a "bond energy" (energy barrier to break)
- Arrhenius relationship gives probability for energy barrier to be overcome, given a temperature

$$p = \exp\left(-\frac{E_b}{k_B T}\right)$$

All bonds vibrate at frequency ω

Probability for bond rupture (Arrhenius relation)

Probability for bond rupture (Arrhenius relation) $f = f_{AP}$

Probability for bond rupture (Arrhenius relation)

$$p = \exp\left(-\frac{E_b - f \cdot x_B}{k_B T}\right)$$

Off-rate = probability times vibrational frequency

$$\chi = \omega_0 \cdot p$$

$$\omega_0 = 1 \times 10^{13} \, 1/\text{sec}$$

bond vibrations

Probability for bond rupture (Arrhenius relation)

$$p = \exp\left(-\frac{E_b - f \cdot x_B}{k_B T}\right)$$

Off-rate = probability times vibrational frequency

$$\chi = \omega_0 \cdot p = \omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right)$$

"How often bond breaks per unit time"

$$\omega_0 = 1 \times 10^{13} \, 1/\text{sec}$$

bond vibrations

Probability for bond rupture (Arrhenius relation)

$$p = \exp\left(-\frac{E_b - f \cdot x_B}{k_B T}\right)$$

Off-rate = probability times vibrational frequency

$$\chi = \omega_0 \cdot p = \omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) = \frac{1}{\tau} \qquad \omega_0 = 1 \times 10^{13} \text{ 1/sec}$$

 τ = bond lifetime (inverse of off-rate)

 $\Delta x / \Delta t = v$ pulling speed (at end of molecule)

 $\Delta x / \Delta t = v$ pulling speed (at end of molecule)

Structure-energy landscape link

$$\Delta x = x_b$$

$$\Delta t = \tau \qquad \tau = \left[\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \right]^{-1}$$

Bond breaking at x_b (lateral applied displacement):

$$\chi \cdot x_b = \omega_0 \cdot \exp \left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T} \right) \cdot x_b = \Delta x / \Delta t = v$$
 pulling speed

$$\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = v$$

Solve this expression for f:

$$\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = v$$

Solve this expression for f:

$$-\frac{(E_b - f \cdot x_b)}{k \cdot T} + \ln(\omega_0 \cdot x_b) = \ln v \leftarrow \ln(..)$$

$$-E_h + f \cdot x_h = k_h \cdot T \left(\ln v - \ln(\omega_0 \cdot x_h) \right)$$

$$f = \frac{E_b + k_b \cdot T \left(\ln v - \ln(\omega_0 \cdot x_b) \right)}{x_b} = \frac{k_b \cdot T}{x_b} \ln v + \frac{k_b \cdot T}{x_b} \left(\frac{E_b}{k_b \cdot T} - \ln(\omega_0 \cdot x_b) \right)$$

$$f = \frac{k_b \cdot T}{x_b} \ln v - \frac{k_b \cdot T}{x_b} \left(\ln(\omega_0 \cdot x_b) - \frac{E_b}{k_b \cdot T} \right)$$

$$f = \frac{k_b \cdot T}{x_b} \ln v - \frac{k_b \cdot T}{x_b} \ln \left(\omega_0 \cdot x_b \cdot \exp \left(-\frac{E_b}{k_b \cdot T} \right) \right)$$

Simplification and grouping of variables

Only system parameters, [distance/length]

$$f(v; x_b, E_b) = \frac{k_b \cdot T}{x_b} \cdot \ln v - \frac{k_b \cdot T}{x_b} \cdot \ln \left(\omega_0 \cdot x_b \cdot \exp\left(-\frac{E_b}{k_b \cdot T}\right) \right)$$

$$=: v_0 = \omega_0 \cdot x_b \cdot \exp\left(-\frac{E_b}{k_b \cdot T}\right)$$

$$\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = v$$

Results in:

$$f(v; x_b, E_b) = \frac{k_b \cdot T}{x_b} \cdot \ln v - \frac{k_b \cdot T}{x_b} \cdot \ln v_0 = a \cdot \ln v + b$$

$$a = \frac{k_B \cdot T}{x_b}$$

$$b = -\frac{k_B \cdot T}{x_b} \cdot \ln v_0$$

$f \sim \ln v$ behavior of strength

 E_b = 5.6 kcal/mol and x_b = 0.17 Å (results obtained from fitting to the simulation data)

Scaling with E_b : shifts curve

$$a = \frac{k_B \cdot T}{x_b} \qquad b = -\frac{k_B \cdot T}{x_b} \cdot \ln v_0 \qquad v_0 = \omega_0 \cdot x_b \cdot \exp\left(-\frac{E_b}{k_b \cdot T}\right)$$

Scaling with x_b : changes slope

$$a = \frac{k_B \cdot T}{x_b} \qquad b = -\frac{k_B \cdot T}{x_b} \cdot \ln v_0 \qquad v_0 = \omega_0 \cdot x_b \cdot \exp\left(-\frac{E_b}{k_b \cdot T}\right)$$

Simulation results

Courtesy of IOP Publishing, Inc. Used with permission. Source: Fig. 3 from Bertaud, J., Hester, J. et al. "Energy Landscape, Structure and Rate Effects on Strength Properties of Alpha-helical Proteins." *J Phys.: Condens. Matter* 22 (2010): 035102. doi:10.1088/0953-8984/22/3/035102.

Mechanisms associated with protein fracture

Change in fracture mechanism

FDM: Sequential HB breaking

SDM: Concurrent HB breaking (3..5 HBs)

Simulation span: 250 ns Reaches deformation speed O(cm/sec)

Single AH structure

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ackbarow, Theodor, et al. "Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-helical and Betasheet Protein Domains." *PNAS* 104 (October 16, 2007): 16410-5. Copyright 2007 National Academy of Sciences, U.S.A.

Analysis of energy landscape parameters

Table 1. Summary of the differences between the SDM and FDM, for AH1, AH2, and BS

Parameter	AH1 (AH2) domain		BS domain	
	SDM	FDM	SDM	FDM
Pulling speed, m/s	v < 0.4 (4)	v > 0.4 (4)	v < 10	v > 10
Unfolding force, pN	F < 350 (400)	F > 350 (400)	<i>F</i> < 4,800	F > 4,800
E _b , kcal/mol	11.1 (9.11)	4.87 (3.08)	11.08	1.82
x _b , Å	1.2 (1.19)	0.2 (0.11)	0.138	0.019
HB-breaking mechanism	Simultaneous	Sequential	Simultaneous	Sequential

The values in parentheses in the AH columns represent the results for AH2.

Energy single H-bond: ≈3-4 kcal/mol

What does this mean???

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ackbarow, Theodor, et al. "Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-helical and Betasheet Protein Domains." *PNAS* 104 (October 16, 2007): 16410-5. Copyright 2007 National Academy of Sciences, U.S.A.

H-bond rupture dynamics: mechanism

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ackbarow, Theodor, et al. "Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-helical and Betasheet Protein Domains." *PNAS* 104 (October 16, 2007): 16410-5. Copyright 2007 National Academy of Sciences, U.S.A.

H-bond rupture dynamics: mechanism

and Robustness Govern the Fracture Mechanics of Alpha-helical and Beta-sheet Protein Domains." *PNAS* 104 (October 16, 2007): 16410-5. Copyright

2007 National Academy of Sciences, U.S.A.

I: All HBs are intact

II: Rupture of 3 HBs – simultaneously; within $\tau \approx 20 \text{ ps}$

III: Rest of the AH relaxes – slower deformation...

3. Examples – materials and applications

E.g. disease diagnosis, mechanisms, etc.

Genetic diseases – defects in protein materials

- Defect at DNA level causes structure modification
- Question: how does such a structure modification influence material behavior / material properties?

ACGT

Four letter code "DNA"

DEFECT IN SEQUENCE

.. - Proline - Serine - Proline - Alanine - ..

Sequence of amino acids "polypeptide" (1D structure)

CHANGED

Folding (3D structure) STRUCTURAL DEFECT

Structural change in protein molecules can lead to fatal diseases

- Single point mutations in IF structure causes severe diseases such as rapid aging disease progeria – HGPS (Nature, 2003; Nature, 2006, PNAS, 2006)
- Cell nucleus loses stability under mechanical (e.g. cyclic) loading, failure occurs at heart (fatigue)

Genetic defect:

Image of patient removed due to copyright restrictions.

substitution of a single DNA base: Amino acid guanine is switched to adenine

Structural change in protein molecules can lead to fatal diseases

- Single point mutations in IF structure causes severe diseases such as rapid aging disease progeria – HGPS (Nature, 2003; Nature, 2006, PNAS, 2006)
- Cell nucleus loses stability under cyclic loading
- Failure occurs at heart (fatigue)

Experiment suggests that mechanical properties of nucleus change

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Dahl, et al. "Distinct Structural and Mechanical Properties of the Nuclear Lamina in Hutchinson–Gilford Progeria Syndrome." *PNAS* 103 (2006): 10271-6. Copyright 2006 National Academy of Sciences, U.S.A.

Mechanisms of progeria

Images courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Dahl, et al. "Distinct Structural and Mechanical Properties of the Nuclear Lamina in Hutchinson–Gilford Progeria Syndrome." *PNAS* 103 (2006): 10271-6. Copyright 2006 National Academy of Sciences, U.S.A.

Deformation of red blood cells

Stages of malaria and effect on cell stiffness

Consequence: Due to rigidity, RBCs can not move easily through

capillaries in the lung

61

Cell deformation

Red blood cell

(a)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Deformation of red blood cells

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Mechanical signature of cancer cells (AFM)

Reprinted by permission from Macmillan Publishers Ltd: Nature Nanotechnology.

Source: Cross, S., Y. Jin, et al. "Nanomechanical Analysis of Cells from Cancer Patients." *Nature Nanotechnology* 2, no. 12 (2007): 780-3. © 2007.

 $3.021 J\,/\,1.021 J\,/\,10.333 J\,/\,18.361 J\,/\,22.00 J$ Introduction to Modeling and Simulation Spring 2012

For information about citing these materials or our Terms of use, visit: http://ocw.mit.edu/terms.