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Nov. 23 2005: Lecture 22: 

Differential Operators, Harmonic Oscillators 

Reading:

Kreyszig Sections: 2.4 (pp:81–83) , 2.5 (pp:83–89) , 2.8 (pp:101–03)
§ § §

Differential Operators 
The idea of a function as “something” that takes a value (real, complex, vector, etc.) as 
“input” and returns “something else” as “output” should be very familiar and useful. 

This idea can be generalized to operators that take a function as an argument and return 
another function. 

The derivative operator operates on a function and returns another function that describes 
how the function changes: 

df 
[f (x)] = D

dx 
d2f 

[ [f (x)]] = D 2[f (x)] = D D
dx2 

dnf (22-1) 
n[f (x)] = D 

dxn 

[αf (x)] =αD[f (x)]D
[f (x) + g(x)] =D[f (x)] + D[g(x)]D

The last two equations above indicate that the “differential operator” is a linear operator. 
The integration operator is the right-inverse of D 

[ [f (x)]] = D[ f (x)dx] (22-2)D I

but is only the left-inverse up to an arbitrary constant. 
Consider the differential operator that returns a constant multiplied by itself 

Df (x) = λf (x) (22-3) 

which is another way to write the the homogenous linear first-order ODE and has the same 
form as an eigenvalue equation. In fact, f (x) = exp(λx), can be considered an eigenfunction 
of Eq. 22-3. 

For the homogeneous second-order equation, 

2
�D + βD − γ

� 
[f (x)] = 0 (22-4) 

It was determined that there were two eigensolutions that can be used to span the entire 
solution space: 

λ−xf (x) = C+e λ+x + C−e (22-5) 

Operators can be used algebraically, consider the inhomogeneous second-order ODE 

2 3
�
aD + bD + c

� 
[y(x)] = x (22-6) 
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By treating the operator as an algebraic quantity, a solution can be found11 

� 
1 

� 

y(x) = [x 3]

aD2 + bD + c


= 

� 
1 
c 
− 

b 
c2 
D + 

b2 − ac 
c3 

D 2 − 
b(b2 − 2ac) 

c3 
D 3 + O(D 4)

� 

x 3 (22-7) 

= 
x3 

c 
− 

3bx2 

c2 
+ 

6(b2 − ac)x 
c3 

− 
6b(b2 − 2ac) 

c3 

which solves Eq. 22-6. 
The Fourier transform is also a linear operator: 

F [f (x)] =g(k) = 

F −1[g(k)] =f (x) = 

1 √
2π 

� ∞ 

−∞
1 √
2π 

� ∞ 

f (x)e ıkxdx 

g(k)e−ıkxdk 
(22-8) 

−∞ 

Combining operators is another useful way to solve differential equations. Consider the 
Fourier transform, F , operating on the differential operator, D: 

1 
� ∞ df (x) 

e ikxdx[ [f ]] = (22-9)F D √
2π −∞ dx 

Integrating by parts, 

1 
= √

2π
f (x) x=∞ ık 

� ∞ df (x) 
e ikxdx (22-10)x=| −∞ − √

2π −∞ dx 

If the Fourier transform of f (x) exists, then typically12 limx→±∞ f (x) = 0. In this case, 

[ [f ]] = −ikF [f (x)] (22-11)F D
and by extrapolation: 

2[ [f ]] = −k2 F [f (x)]F 

[

D
n[f ]] = (−1)nınkn [f (x)] 

(22-12) F D F 

cqkcq Operational Solutions to ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the heterogeneous second-order linear ODE which represent a forced, damped, 

harmonic oscillator that will be discussed later in this lecture. 

d2y(t) dy(t)
M + V + Ksy(t) = cos(ωot) (22-13)

dt2 dt 
11This method can be justified by plugging back into the original equation and verifying that the result is a 

solution. 
12 It is not necessary that limx→±∞ f (x) = 0 for the Fourier transform to exist but it is satisfied in most 

every case. The condition that the Fourier transform exists is that 
� ∞ 

|f (x) dx|
−∞ 

exists and is bounded. 
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Apply a Fourier transform (mapping from the time (t) domain to a frequency (ω) domain) to 
both sides of 22-13: 

d2y(t) dy(t)
[M + V + Ksy(t)] = F [cos(ωot)]F 

dt2 dt 
(22-14)� 

π −M ω2 [y] − ıωV F [y] + KsF [y] = [δ(ω − ωo) + δ(ω + ωo)]F 
2 

because the Dirac Delta functions result from taking the Fourier transform of cos(ωot). 
Equation 22-14 can be solved for the Fourier transform: 

� 
−π [δ(ω − ωo) + δ(ω + ωo)]

[y] = (22-15)F 
2 M ω2 + ıωV − Ks 

In other words, the particular solution Eq. 22-13 can be obtained by finding the function 
y(t) that has a Fourier transform equal the the right-hand-side of Eq. 22-15–or, equivalently, 
operating with the inverse Fourier transform on the right-hand-side of Eq. 22-15. 

Mathematica R� Example: Lecture-22 
          Operator Calculus and the Solution to the Damped-Forces Harmonic Oscillator Model 

Mathematica R does have built-in functions to take Fourier (and other kinds of) 
integral transforms. However, as will be seen below, using operational calculus to 
solve ODEs is not necessarily simple in Mathematica R . Nevertheless, it may be 
instructive to force it—if only as an an example of using the good tool for the wrong 
purpose. 

Rules for Linear Operators 

cqkcq Operators to Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equally powerful is the concept of a functional which takes a function as an argument and 

returns a value. For example S[y(x)], defined below, operates on a function y(x) and returns 
its surface of revolution’s area for 0 < x < L: 

� L 
� � 

dy 
�2 

[y(x)] = 2π y 1 + dx (22-16)
dx

S
0 

This is the functional to be minimized for the question, “Of all surfaces of revolution that span 
from y(x = 0) to y(x = L), which is the y(x) that has the smallest surface area?” 
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This idea of finding “which function maximizes or minimizes something” can be very pow­
erful and practical. 

Suppose you are asked to run an “up-hill” race from some starting point (x = 0, y = 0) to 
some ending point (x = 1, y = 1) and there is a ridge h(x, y) = x2 . What is the most efficient 
running route y(x)?13 

Figure 22-1: The terrain separating the starting point (x = 0, y = 0) and ending point 
(x = 1, y = 1). Assuming a model for how much running speed slows with the steepness 
of the path—which route would be quicker, one (y1(x)) that starts going up-hill at first 
or another (y2(x)) that initially traverses a lot of ground quickly? 

A reasonable model for running speed as a function of climbing-angle α is 

v(s) = cos(α(s)) (22-17) 

where s is the arclength along the path. The maximum speed occurs on flat ground α = 0 
and running speed monotonically falls to zero as α → π/2. To calculate the time required to 
traverse any path y(x) with endpoints y(0) = 0 and y(1) = 1, 

13 An amusing variation on this problem would be to find the path that the path that a winning downhill 
skier should traverse. 
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ds	 ds 1 1 
= v(s) = cos(α(s)) = = =


dt 
√

ds2 + dh2 
�

1 + dh 2 
�

1 + dh2


ds dx2 +dy2


ds	 dy 2 dh 2 

dt = = 

�
dx2 + dy2 

= 
�

dx2 + dy2 + dh2 = 

� 

1 + + dx 

(22-18) 

v(s) cos(α(s)) dx dx 

So, with the hill h(x) = x2, the time as a functional of the path is: 

� 1 
� 

dy 2 

T [y(x)] = 
0 

1 + + 4x2 dx	 (22-19)
dx 

Mathematica R� Example:  Lecture-22
Functionals: Introduction to Variational Calculus by Variation of Parameters 

1. Instead of trying to find the function y(x) (if such a function exists) that min­
imizes the function in Eq. 22-19, consider the polynomial y(x) = a + bx + cx2 

as an “approximating function” and then find the parameters a, b, and c, that 
minimize the functional. 

2. Ensure that the cubic equation satisfies the boundary conditions and thereby 
fix two of the three free parameters 

3. By integrating	y(x) in Eq. 22-19, the functional equation is transformed to a 
function of the remaining free variable. (It is much easier in Mathematica R

to integrate without limits in Eq. 22-19 and then evaluate the limits in a separate 
step.) 

4. Find the parameter that minimizes the integral. 

5. Visualize the quickest path. 

There is a powerful and beautiful mathematical method for finding the extremal functions 
of functionals which is called Calculus of Variations. 
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By using the calculus of variations, the optimal path y(x) for Eq. 22-19 can be determined: 

2x
√

1 + 4x2 + sinh−1(2x) 
y(x) = (22-20)

2
√

5 + sinh−1(2) 

The approximation determined in the Mathematica R example above is pretty good. 

Harmonic Oscillators 
Methods for finding general solution to the linear inhomogeneous second-order ODE 

d2y(t) dy(t) 
a + b + cy(t) = F (t) (22-21)

dt2 dt 

have been developed and worked out in Mathematica R examples. 
Eq. 22-21 arises frequently in physical models, among the most common are:


d2I(t) dI(t) 1

Electrical circuits: L + ρlo + I(t) = V (t)

dt2 dt C (22-22)
d2y(t) dy(t)

Mechanical oscillators: M + ηlo + Ksy(t) = Fapp(t)
dt2 dt 

where: 
Mechanical Electrical 

Second Mass M : Physical measure of the ratio of Inductance L: Physical measure of the ra-
Order momentum field to velocity tio of stored magnetic field to current 
First 
Order 

Drag Coefficient c = ηlo 

(η is viscosity lo is a unit displacement): 
Physical measure of the ratio environmental 
resisting forces to velocity—or proportion­
ality constant for energy dissipation with 
square of velocity 

Resistance R = ρlo 

(ρ is resistance per unit material length 
lo is a unit length): Physical measure of the 
ratio of voltage drop to current—or propor­
tionality constant for power dissipated with 
square of the current. 

Zeroth 
Order 

Spring Constant Ks: Physical measure 
of the ratio environmental force developed 
to displacement—or proportionality constant 

Inverse Capacitance 1/C: Physical mea­
sure of the ratio of voltage storage rate to 
current—or proportionality constant for en-

for energy stored with square of displacement ergy storage rate dissipated with square of 
the current. 

Forcing 
Term 

Applied Voltage V (t): Voltage applied to 
circuit as a function of time. 

Applied Force F (t): Force applied to os­
cillator as a function of time. 

For the homogeneous equations (i.e. no applied forces or voltages) the solutions for phys­
ically allowable values of the coefficients can either be oscillatory, oscillatory with damped 
amplitudes, or, completely damped with no oscillations. (See Figure 21-1). The homogeneous 
equations are sometimes called autonomous equations—or autonomous systems. 

cqkcq Simple Undamped Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The simplest version of a homogeneous Eq. 22-21 with no damping coefficient (b = 0, 

R = 0, or η = 0) appears in a remarkably wide variety of physical models. This simplest

physical model is a simple harmonic oscillator—composed of a mass accelerating with a linear
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spring restoring force: 

Inertial Force = Restoring Force 

MAcceleration = Spring Force 

M
d2y(t)

= −Ksy(t) (22-23) 
dt2 

d2y(t)
M + Ksy(t) = 0 

dt2 

Here y is the displacement from the equilibrium position–i.e., the position where the force, 
F = −dU/dx = 0. Eq. 22-23 has solutions that oscillate in time with frequency ω: 

y(t) = A cos ωt + B sin ωt 
(22-24) 

y(t) = C sin(ωt + φ) 

where ω = 
�

Ks/M is the natural frequency of oscillation, A and B are integration constants 
written as amplitudes; or, C and φ are integration constants written as an amplitude and a 
phase shift. 

The simple harmonic oscillator has an invariant, for the case of mass-spring system the 
invariant is the total energy: 

Kinetic Energy + Potential Energy = 
M 2 Ks 2 v + y = 
2 2 

M dy 2 Ks 2+ y = 
2 dt 2 (22-25)

M 2A2ω2 cos (ωt + φ) + A2 Ks 
sin2(ωt + φ) = 

2 2 
M 2 Mω2 

A2(ω2 cos (ωt + φ) + sin2(ωt + φ) = 
2 2 

A2Mω2 = constant 

There are a remarkable number of physical systems that can be reduced to a simple harmonic 
oscillator (i.e., the model can be reduced to Eq. 22-23). Each such system has an analog to a 
mass, to a spring constant, and thus to a natural frequency. Furthermore, every such system 
will have an invariant that is an analog to the total energy—an in many cases the invariant 
will, in fact, be the total energy. 

The advantage of reducing a physical model to a harmonic oscillator is that all of the 
physics follows from the simple harmonic oscillator. 
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Here are a few examples of systems that can be reduced to simple harmonic oscillators: 

Pendulum By equating the rate of change of angular momentum equal to the torque, the 
equation for pendulum motion can be derived: 

d2θ 
MR2 + MgR sin θ = 0 (22-26)

dt2 

for small-amplitude pendulum oscillations, sin(θ) ≈ θ, the equation is the same as a 
simple harmonic oscillator. 

It is instructive to consider the invariant for the non-linear equation. Because 

d2θ dθ 
� 

ddθ 
� 

dt = (22-27)
dt2 dt dθ 

Eq. 22-26 can be written as: 
� 

ddθdθ dt 

� 

MR2 + MgR sin(θ) = 0 (22-28)
dt dθ 

d 
� 

MR2 � 
dθ

�2 
� 

− MgR cos(θ) = 0 (22-29)
dθ 2 dt


which can be integrated with respect to θ:


MR2 � 
dθ 

�2 

− MgR cos(θ) = constant (22-30)
2 dt 

This equation will be used as a level-set equation to visualize pendulum motion. 

Buoyant Object Consider a buoyant object that is slightly displaced from its equilibrium 
floating position. The force (downwards) due to gravity of the buoy is ρbouy gVbouy 

The force (upwards) according to Archimedes is ρwater gVsub where Vsub is the volume 
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of the buoy that is submerged. The equilibrium position must satisfy Vsub−eq /Vbouy =

ρbouy /ρwater .


If the buoy is slightly perturbed at equilibrium by an amount δx the force is:


F =ρwater g(Vsub−eq + δxAo) − ρbuoy gVbuoy 
(22-31)

F =ρwater gδxAo 

where Ao is the cross-sectional area at the equilibrium position. Newton’s equation of 
motion for the buoy is: 

d2y
Mbuoy − ρwater gAoy = 0 (22-32)

dt2


so the characteristic frequency of the buoy is ω = 
�

ρwater gAo/Mbouy .


Single Electron Wave-function The one-dimensional Schrödinger equation is: 

d2ψ 2m 
+ 

h2 (E − U (x)) ψ = 0 (22-33)
dx2 ¯

where U (x) is the potential energy at a position x. If U (x) is constant as in a free 
electron in a box, then the one-dimensional wave equation reduces to a simple harmonic 
oscillator. 

In summation, just about any system that oscillates about an equilibrium state can be reduced 
to a harmonic oscillator. 


