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Nov. 14 2005: Lecture 21: 

Higher­Order Ordinary Differential Equations 
Reading:

Kreyszig Sections: 2.1 (pp:54–70) , 2.2 (pp:72–75) , 2.3 (pp:76–80)
§ § §

Higher­Order Equations: Background 

For first­order ordinary differential equations (ODEs), F (y�(x), y(x), x), one value y(xo) was 
needed to specify a particular solution. For second­order equations, two independent values 
are needed. This is illustrated in the following forward­differencing example. 

Mathematica r� Example: Lecture­21 
A Second­Order Forward Differencing Example 

Recall the example in Lecture 19 of a first­order differencing scheme: at each iteration

the function grew proportionally to its current size. In the limit of very small forward

differences, the scheme converged to exponential growth.

Now consider a situation in which function’s current rate of growth increases propor­

tionally to two terms: its current rate of growth and its size.


Change in Value’s Rate of Change + α (the Value) + β (Value’s Rate of Change) = 0


To Calculate a forward differencing scheme for this case, let Δ be the forward­

differencing increment.


� 
Fi+2−Fi+1 Fi+2−Fi+1 

� � 
Fi+1 − Fi 

�
Δ − 

Δ + αFi + β = 0 
Δ Δ 

and then solve for the “next increment” Fi+2 if Fi+1 and Fi are known. 

Forward Difference Formulae 
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q cqckLinear Differential Equations; Superposition in the Homogeneous Case . . . . . . . . . . . . . . . 
A linear differential equation is one for which the function and its derivatives are each linear— 
that is they appear in distinct terms and only to the first power. In the case of a homogeneous 
linear differential equation, the solutions are superposable. In other words, sums of solutions 
and their multiples are also solutions. 

Therefore, a linear heterogeneous ordinary differential equation can be written as a product 
of general functions of the dependent variable and the derivatives for the n­order linear case: 

0 = f0(x) + f1(x) 
dy 
dx 

+ f2(x) 
d2y 
dx2 

+ · · · + fn(x) 
dny 
dxn 

= (f0(x), f1(x), f2(x), . . . , fn(x)) · 
�

1, 
dy 
dx 

, 
d2y 
dx2 

, . . . , 
dny 
dxn 

� 
(21­1) 

= �f (x) · D�
ny 

The homogeneous nth­order linear ordinary differential equation is defined by f0(x) = 0 in 
Eq. 21­1: 

0 = f1(x) 
dy 
dx 

+ f2(x) 
d2y 
dx2 

+ · · · + fn(x) 
dny 
dxn 

= (0, f1(x), f2(x), · · · , fn(x)) · 
�

1, 
dy 
dx 

, 
d2y 
dx2 

, . . . , 
dny 
dxn 

� 
(21­2) 

= fhom
� (x) · D�

ny 

Equation 21­1 can always be multiplied by 1/fn(x) to generate the general form: 

0 = F0(x) + F1(x) 
dy 
dx 

+ F2(x) 
d2y 
dx2 

+ · · · + 
dny 
dxn 

= (F0(x), F1(x), F2(x), . . . , 1)) · (1, dy 
dx 

, 
d2y 
dx2 

, . . . , 
dny 
dxn 

) (21­3) 

= �F (x) · D�
ny 

For the second­order linear ODE, the heterogeneous form can always be written as: 

d2y dy
+ p(x) + q(x)y = r(x) (21­4)

dx2 dx 

and the homogeneous second­order linear ODE is: 

d2y dy
+ p(x) + q(x)y = 0 (21­5)

dx2 dx 

q cqckBasis Solutions for the homogeneous second­order linear ODE . . . . . . . . . . . . . . . . . . . . . . . 
Because two values must be specified for each solution to a second order equation—the 

solution can be broken into two basic parts, each deriving from a different constant. These two 
independent solutions form a basis pair for any other solution to the homogeneous second­order 
linear ODE that derives from any other pair of specified values. 
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The idea is the following: suppose the solution to Eq. 21­5 is found the particular case of 
specified parameters y(x = x0) = A0 and y(x = x1) = A1, the solution y(x; A0, A1) can be 
written as the sum of solutions to two other problems. 

y(x; A0, A1) = y(x,A0, 0) + y(x, 0, A1) = y1(x) + y2(x) (21­6) 

where 

y(x0, A0, 0) = A0 and y(x1, A0, 0) = 0 
(21­7) 

y(x0, 0, A1) = 0 and y(x1, 0, A1) = A1 

from these two solutions, any others can be generated. 

The two arbitrary integration constants can be included in the definition of the general 
solution: 

y(x) = C1y1(x) + C1y2(x) 
(21­8)

= (C1, C2) · (y1, y2) 

Second Order ODEs with Constant Coefficients 

The most simple case—but one that results from models of many physical phenomena—is 
that functions in the homogeneous second­order linear ODE (Eq. 21­5) are constants: 

d2y dy 
a + b + cy = 0 (21­9)
dx2 dx 
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If two independent solutions can be obtained, then any solution can be formed from this 
basis pair. 

Surmising solutions seems a sensible strategy, certainly for shrewd solution seekers. Suppose 
the solution is of the form y(x) = exp(λx) and put it into Eq. 21­9: 

(aλ2 + bλ + c)e λx = 0	 (21­10) 

which has solutions when and only when the quadratic equation aλ2 + λx + c = 0 has solutions 
for λ. 

Because two solutions are needed and because the quadratic equation yields two solutions: 

−b + 
√

b2 − 4ac 
λ+ = 

2a (21­11) −b −√b2 − 4ac 
λ	 = − 

2a 
or by removing the redundant coefficient by diving through by a: 

λ+ = 
−β 

+ 

� 

( 
β 

)2 − γ 
2 2 (21­12) 

λ = 
−β 

� 

( 
β 

)2 − γ− 
2 
− 

2 
where β ≡ b/a and γ ≡ c/a. 

Therefore, any solution to Eq. 21­9 can be written as 
λ−x y(x) = C+e λ+x + C−e	 (21­13) 

Mathematica r� Example: Lecture­21  
Solutions to 

dx2 
d2y + β dy + γy = 0 

dx 
Because the fundamental solution depend on only two parameters β and γ, the be­
havior of all solutions can be visualized in the γ­β plane. 

1. Insert y(x) = exp(λx) into the ODE y�� + βy� + γy = 0 and solve for a condition 
on λ that solutions exist (assuming real coefficients γ and β). 

2. Plot the condition that the roots are complex in the	 γ­β plane. This is the 
region of parameter space that gives oscillatory solutions (because exp(r + ıθ) = 
exp(r)(cos(x) + ı sin(x))) 

3. Plot the conditions that the	 λ are real—these are the monotonically growing 
(λ > 0) or shrinking (λ < 0) solutions 

4. Plot the conditions that the real part is negative, this is the damped oscillatory 
region. 

5. Plot the conditions that the real part is positive, this is the unbounded growth 
region. 

6. Use the Mathematica r� function Reduce to find the three regions: (λ+ > 
0, λ− > 0)—monotonically growing solutions, (λ+ > 0, λ− < 0)—one growing 
and one decaying solution, (λ+ < 0, λ− < 0)—monotonically decaying solutions. 
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The behavior of all solutions can be collected into a simple picture: 

Figure 21­1: The behaviors of the linear homogeneous second­order ordinary differential 
equation d2y + β dy + γy = 0 plotted according the behavior of the solutions for all β

dx2 dx 
and γ. 

The case that separates the complex solutions from the real solutions, γ = (β/2)2 must 
be treated separately, for the case γ = (β/2)2 it can be shown that y(x) = exp(βx/2) and 
y(x) = x exp(βx/2) form an independent basis pair (see Kreyszig AEM, p. 74). 

Boundary Value Problems 

It has been shown that all solutions to d2y + β dy + γy = 0 can be determined from a linear 
dx2 dx 

combination of the basis solution. Disregard for a moment whether the solution is complex or 
real, and ignoring the special case γ = (β/2)2 . The solution to any problem is given by 

λ−x y(x) = C+e λ+x + C−e (21­14) 

How is a solution found for a particular problem? Recall that two values must be specified to 
get a solution—these two values are just enough so that the two constants C+ and C can be −
obtained. 

In many physical problems, these two conditions appear at the boundary of the domain. 
A typical problem is posed like this: 

Solve 
d2y(x) dy(x) 

m + ν + ky(x) = 0 on 0 < x < L (21­15)
dx2 dx 
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subject to the boundary conditions 

y(x = 0) = 0 and y(x = L) = 1 

or, solve 

m 
d2y(x) 
dx2 

+ ν 
dy(x) 
dx 

+ ky(x) = 0 on 0 < x < ∞ (21­16) 

subject to the boundary conditions 

y(x = 0) = 1 and y�(x = L) = 0 

When the value of the function is specified at a point, these are called Dirichlet conditions; 
when the derivative is specified, the boundary condition is called a Neumann condition. It is 
possible have boundary conditions that are mixtures of Dirichlet and Neumann. 

Mathematica r� Example: Lecture­21 
Determining Solution Constants from Boundary Values 

1. Using Solve, find the specific solution to y(0) = 0 and y(l) = 1. 

2. Using Solve, find the specific solution to y(0) = 1 and y�(0) = 0. 

When the domain is infinite or semi­infinite and the physical situation indicates that 
the solution must be bounded, then one can automatically set the constants associated 
with roots with real positive parts to zero, because these solutions grow without 
bound. 

Fourth Order ODEs, Elastic Beams 
Another linear ODE that has important applications in materials science is that for the de­
flection of a beam. The beam deflection y(x) is a linear fourth­order ODE: 

d2 �
d2y(x) 

�
EI = w(x) (21­17)

dx2 dx2 

where w(x) is the load density (force per unit length of beam), E is Young’s modulus of 
elasticity for the beam, and I is the moment of inertia of the cross section of the beam: 

I = 
� 

y 2dA (21­18) 
A×−sect 

is the second­moment of the distribution of heights across the area. 
If the moment of inertia and the Young’s modulus do not depend on the position in the 

beam (the case for a uniform beam of homogeneous material), then the beam equation becomes: 

d4y(x)
EI = w(x) (21­19)

dx4 

The homogeneous solution can be obtained by inspection—it is a general cubic equation 
3yhomog (x) = C0 + C1x + C2x

2 + C3x which has the four constants that are expected from a 
fourth­order ODE. 
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MIT 3.016 Fall 2005 � W.C Carter Lecture 21c 141 

Point Loaded local applied moment, displacement specified. 

d2y 
����M = = Mo

dx2 
boundary 

y(x) boundary = yo|

Clamped Displacement specified, slope specified 

dy 
���� = so

dx boundary 

y(x) boundary = yo|

Mathematica r� Example:  Lecture­23 
Visualizing beam deflections 

general solutions to beam equation 


