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Nov. 07 2005: Lecture 19: 

Ordinary Differential Equations: Introduction 

Reading:

Kreyszig Sections: 1.1 (pp:2–8) , 1.2 (pp:10–12) , 1.3 (pp:14–18)
§ § §

Differential Equations: Introduction 

Ordinary differential equations are relations between a function of a single variable, its 
derivatives, and the variable: 

� 
dny(x) dn−1f (x) d2y(x) dy(x) 

�
F ,

dxn−1 
, . . . , 

dx2 
, 
dx 

, y(x), x = 0 (19­1)
dxn 

A first­order Ordinary Differential Equation (ODE) has only first derivatives of a function. 

dy(x)
F ( , y(x), x) = 0 (19­2)

dx 

A second­order ODE has second and possibly first derivatives. 
� 
d2y(x) dy(x) 

�
F 

dx2 
, 
dx 

, y(x), x = 0 (19­3) 

For example, the one­dimensional time­independent Shrödinger equation, 

h̄ d2ψ(x) 
+ U (x)ψ(x) = Eψ(x)− 

2m dx2


or


¯
h d2ψ(x) 
+ U (x)ψ(x) − Eψ(x) = 0 − 

2m dx2 

is a second­order ordinary differential equation that specifies a relation between the wave 
function, ψ(x), its derivatives, and a spatially dependent function U (x). 

Differential equations result from physical models of anything that varies—whether in 
space, in time, in value, in cost, in color, etc. For example, differential equations exist for mod­
eling quantities such as: volume, pressure, temperature, density, composition, charge density, 
magnetization, fracture strength, dislocation density, chemical potential, ionic concentration, 
refractive index, entropy, stress, etc. That is, almost all models for physical quantities are 
formulated with a differential equation. 

The following example illustrates how some first­order equations arise: 
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Mathematica r� Example:  Lecture­19 
Iteration: First­Order Sequences 

Consider a function that changes according to its current size–that is, at a subsequent 
iteration, the function grows or shrinks according to how large it is currently. 

Fi+1 = Fi + αFi 

which is equivalent to 
Fi = Fi−1 + αFi−1 

Iteration Trajectories 

First­Order Finite Differences 
The example above is not terribly useful because the change at each increment is 
an integer and the function only has values for integers. To generalize, a forward 
difference can be added that allows the variable of the function to “go forward” at 
an arbitrarily small increment, δ. 
If the rate of change of y, is a function f (y) of the current value, then, 

yi+1 = yi + δf (yi) 

or 
y(x = (i + 1)δ)) = y(x = iδ) + δf (y(x = iδ)) 

where x plays the role of an ‘indexed grid’ with small separations δ. 
Finite Differences 

Mathematica r� Example:  Lecture­19 
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First­Order Operators 
The forward­difference equation considered above relates the next iteration, yi+1 to 
the current value yi. Only yi appear on the right­hand­side of the equation—the 
right­hand­side can be thought of an “Operation” on y that pushes it to the next 
iteration, i.e., 

yi+1 = F (yi) 

In this way, the nth iteration is determined from the initial value with 

nyn = (y0)F 

Increment Operators 

Geometrical Interpretation of Solutions 

The relationship between a function and its derivatives for a first­order ODE, 

dy(x)
F ( , y(x), x) = 0 (19­4)

dx 

can be interpreted as a level set formulation for a two­dimensional surface embedded in a 
three­dimensional space with coordinates (y�, y, x). The surface specifies a relationship that 
must be satisfied between the three coordinates. 

If y�(x) can be solved for exactly, 

dy(x) 
= f(x, y) (19­5)

dx 

then y�(x) can be thought of as a height above the x­y plane. 

Mathematica r� Example:  Lecture­19 
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The Geometry of First­Order ODES: Examples 
Consider Newton’s law of cooling that states that the rate that a body cools by 
radiation is proportional to the difference in temperature between the body and its 
surroundings: 

dT (t) 
= −k(T − To)

dt 
Make the equation simpler by converting to a non­dimensional form, let Θ = T /To 

and τ = t/k, then 
dΘ(τ ) 

= (1 − Θ)
dτ 

Flows 

Separable Equations 

If a first­order ordinary differential equation F (y�, y, x) = 0 can be rearranged so that only 
one variable, for instance y, appears on the left­hand­side multiplying its derivative and the 
other, x, appears only on the right­hand­side, then the equation is said to be ‘separated.” 

dy 
g(y) = f (x)

dx (19­6) 
g(y)dy = f (x)dx 

Each side of such an equation can be integrated with respect to the variable that appears on 
that side: 

x� y � 
g(η)dη = f (ξ)dξ (19­7) 

y(xo) xo 

if the initial value, y(xo) is known. If not, the equation can be solved with an integration 
constant C0, 

g(y)dy = f (x)dx + C0 (19­8) 

where C0 is determined from initial conditions. 
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Using Mathematica r� ’s Built­in Ordinary Differential Equation Solver 
Mathematica r� has built­in exact and numerical differential equations solvers. 
DSolve takes a representation of a differential equation with initial and boundary 
conditions and returns a solution if it can find one. If insufficient initial or boundary 
conditions are specified, then “integration constants” are added to the solution. 
DSolve[] 

While the accuracy of the first­order differencing scheme can be determined by comparison 
to an exact solution, the question remains of how to establish accuracy and convergence with 
the step­size δ for an arbitrary ODE. This is a question of primary importance and studied by 
Numerical Analysis. 
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