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Nov. 02 2005: Lecture 17: 

Function Representation by Fourier Series 

Reading:

Kreyszig Sections: 10.1 (pp:527–28) , 10.2 (pp:529–36) , 10.3 (pp:537–40) , 10.4 (pp:541–46)
§ § § §

Periodic Functions 

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of 
tides, the patterns and textures of our buildings, decorations, and vestments invoke repetition 
and periodicity that seem to be inseparable from the elements of human cognition.8 

A function that is periodic in a single variable can be expressed as: 

f (x + λ) = f (x) 
(17­1)

f (t + τ ) = f (t) 

The first form is a suggestion of a spatially periodic function with wavelength λ and the 
second form suggests a function that is periodic in time with period τ . Of course, both forms 
are identical and express that the function has the same value at an infinite number of points 
( x = nλ in space or t = nτ in time where n is an integer.) 

Specification of a periodic function, f (x), within one period x ∈ (xo, xo + λ) defines the 
function everywhere. The most familiar periodic functions are the trigonometric functions: 

sin(x) = sin(x + 2π) and cos(x) = cos(x + 2π) (17­2) 

Mathematica r� Example:  Lecture­17 
Making Periodic Functions 

Periodic functions are often associated with the “modulus” operation. Mod[x, λ] is the 
remainder of dividing x by λ. Its result always lies in the domain 0 ≤ Mod[x, λ] ≤ λ). 
Another way to think of modulus is to find the “point” where are periodic function 
should be evaluated if its primary domain is x ∈ (0, λ). 
Periodic extensions of functions 

8I hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, 
my wistfulness is taking a poetic turn: 

They repeat themselves

What is here, will be there

It wills, willing, to be again

spring; neap, ebb and flow, wane; wax

sow; reap, warp and woof, motif; melody.

The changed changes. We remain

Perpetually, Immutably, Endlessly.
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Odd and Even Functions 

The trigonometric functions have the additional properties of being an odd function about 
the point x = 0: fodd : fodd(x) = −fodd(−x) in the case of the sine, and an even function in 
the case of the cosine: feven : feven(x) = feven(−x). 

This can generalized to say that a function is even or odd about a point λ/2: f odd :

2
λ 

f odd (λ/2 + x) = −f odd 

Any function can be decomposed into an odd and even sum: 
(λ/2 − x) and f
 : f (λ/2 + x) = f (λ/2 − x).λ λ λ λ λ even even even

2 2 2 2 2 

g(x) = geven + godd (17­3) 

The sine and cosine functions can be considered the odd and even parts of the generalized 
trigonometric function: 

ix e = cos(x) + ı sin(x) (17­4) 

with period 2π. 

Representing a particular function with a sum of other functions 

A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the 
neighborhood of a point, xo, with a bunch of functions, pi(x), defined by the set of powers: 

pi ≡ � 1 jp = (x 0 , x , . . . , x , . . .) (17­5) 

The polynomial that approximates the function is given by: 

f(x) = �A · �p (17­6) 

where the vector of coefficients is defined by: 

Ai ≡ �A = ( 
1 
0! 

f(xo), 
1 
1! 

df 
dx 

����
xo 

, . . . , 
1 
j! 

dj f 
dxj 

����
xo 

, . . .) (17­7) 

The idea of a vector of infinite length has not been formally introduced, but the idea that 
as the number of terms in the sum in Eq. 17­6 gets larger and larger, the approximation 
should converge to the function. In the limit of an infinite number of terms in the sum (or the 
vectors of infinite length) the series expansion will converge to f(x) if it satisfies some technical 
continuity constraints. 
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However, for periodic functions, the domain over which the approximation is required is 
only one period of the periodic function—the rest of the function is taken care of by the 
definition of periodicity in the function. 

Because the function is periodic, it makes sense to use functions that have the same period 
to approximate it. The simplest periodic functions are the trigonometric functions. If the 
period is λ, any other periodic function with periods λ/2, λ/3, λ/N , will also have period λ. 
Using these ”sub­periodic” trigonometric functions is the idea behind Fourier Series. 

Fourier Series 

The functions cos(2πx/λ) and sin(2πx/λ) each have period λ. That is, they each take on 
the same value at x and x + λ. 

There are an infinite number of other simple trigonometric functions that are periodic 
in λ; they are cos[2πx/(λ/2))] and sin[2πx/(λ/2))] and which cycle two times within each 
λ, cos[2πx/(λ/3))] and sin[2πx/(λ/3))] and which cycle three times within each λ, and, in 
general, cos[2πx/(λ/n))] and sin[2πx/(λ/n))] and which cycle n times within each λ. 

The constant function, a0(x) = const, also satisfies the periodicity requirement. 
The superposition of multiples of any number of periodic function must also be a periodic 

function, therefore any function f (x) that satisfies: 

∞ ∞ � 
2πn 

�
f (x) = E0 + 

� 
En cos 

� 
2πn

x 

� 

+ 
� 

On sin x 
λ λ 

n=1 n=1 
(17­8)∞ ∞

= Ek0 + 
� 

Ekn cos(knx) + 
� 

Okn sin(knx) 
n=1 n=1 

where the ki are the wave­numbers or reciprocal wavelengths defined by kj ≡ 2πj/λ. The k’s 
represent inverse wavelengths—large values of k represent short­period or high­frequency terms. 

If any periodic function f (x) could be represented by the series in in Eq. 17­8 by a suitable 
choice of coefficients, then an alternative representation of the periodic function could be 
obtained in terms of the simple trigonometric functions and their amplitudes. 



�

�
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The “inverse question” remains: “How are the amplitudes Ekn (the even trigonometric 
terms) and Okn (the odd trigonometric terms) determined for a given f(x)?” 

The method follows from what appears to be a “trick.” The following three integrals have 
simple forms for integers M and N : 

x0+λ λ
� � 

2πM 
� � 

2πN 
� � 

2 if M = N 
sin x sin x dx = 

λ λ 0 if M = N x0 

x0+λ λ
� � 

2πM 
� � 

2πN 
� � 

2 if M = N 
(17­9)cos x cos x dx = 

λ λ 0 if M = N x0 

x0+λ� � 
2πM 

� � 
2πN 

� 

cos x sin x dx = 0 for any integers M, N 
λ λx0 

Therefore, any amplitude can be determined by multiplying both sides of Eq. 17­8 by its 
conjugate trigonometric function and integrating over the domain. (Here we pick the domain 
to start at zero, x ∈ (0, λ), but any other starting point would work fine.) 

∞ ∞ � 

cos(kM x)f(x) = cos(kM x) 

� 

Ek0 + 
� 

Ekn cos(knx) + 
� 

Okn sin(knx)

n=1 n=1
� λ � 

Ekn 

� 
Okncos(kM x)f(x)dx = 

� λ 

cos(kM x) 

� 

Ek0 + 
∞

cos(knx) + 
∞

sin(knx) 

� 

dx (17­10) 
0 0 n=1 n=1 � λ λ 

cos(kM x)f(x)dx =
2 
EkM 

0 

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a 
sin function provides a way to calculate the odd coefficients (amplitudes) for f(x) periodic in 
the fundamental domain x ∈ (0, λ). 

1 
� λ 

= f(x)dxEk0 λ 0 

2 
� λ 2πN 

= f(x) cos(kN x)dx kN ≡ 
λ 

(17­11)EkN λ 0 

2 
� λ 2πN 

= f(x) sin(kN x)dx kNOkN λ 0 
≡ 

λ 
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The constant term has an extra factor of two because 
� λ Ek0 dx = λEk0 instead of the λ/2
0 

found in Eq. 17­9. 



� 
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Mathematica r� Example: Lecture­17 
Orthogonality of Trignometric Functions 

Demonstrate that the relations in Eq. 17­9 are true. 
Mathematica r� does not directly simplify and cancel periodic sine and cosine terms. 

Calculating Fourier Amplitudes 

1. Write functions to calculate the even (cosine) coefficients and the odd (sine) 
coefficients using the formulas in Eq. 17­11. 

2. It is convenient to include the zeroth­order coefficient for the odd (sine) series 
which vanishes by definition. 

3. The functions work by doing an integral for each term—this is not very efficient. 
It would be more efficient to calculate the integral symbolically once and then 
evaluate it once for each term. 

4. Define an example function, f(x) = x(1 − x)2(2 − x), with which to demonstrate 
the Fourier approximation. This function is even about the x = 1 point. 

5. Define functions that create vectors of amplitudes for the cosine and sine terms. 

6. If a wavelength λ = 2 is used for the domain, then we should see that all odd 
(sine) Fourier amplitudes should vanish. 

7. The Fourier series up to a certain order can be defined as the sum of two inner 
(dot) products: the inner product of the odd coefficient vector and the sine 
basis vector, and the inner product of the even coefficient vector and the cosine 
basis vector. 

8. Illustrate convergence for different orders of approximation. 

Using the Fourier Package 
Of course, Fourier series expansions are a common and useful mathematical tool, and 
it is not surprising that Mathematica r would have a package to do this and 
replace the inefficient functions defined above. 

1. Mathematica r� ’s Fourier package is designed to operate on the unit period 
located at x ∈ (−1/2, 1/2). 

2. Construct a function that converts a function defined as periodic in fundamental 
domain x ∈ (0, λ) and maps it to a function that has fundamental domain 
x ∈ (−1/2, 1/2). 

3. Demonstrate how Mathematica r� ’s Fourier functions operate and illustrate 
convergence. 

4. If the function being approximated has some discontinuities either in its values, 
or in its first derivatives, then wiggles will develop near the discontinuities where 
the convergence is not locally well­behaved. This is called Gibbs’ phenomenon. 

5. Use the Fourier package to illustrate and interpret the the spectrum of Fourier 
coefficients. 



�
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Other forms of the Fourier coefficients 
Sometimes the primary domain is defined with a different starting point and different symbols, 
for instance Kreyszig uses a centered domain by using −L as the starting point and 2L as the 
period, and in these cases the forms for the Fourier coefficients look a bit different. One needs 
to look at the domain in order to determine which form of the formulas to use. 

Extra Information and Notes 
Potentially interesting but currently unnecessary 
The “trick” of multiplying both sides of Eq. 17­8 by a function and integrating comes 
from the fact that the trigonometric functions form an orthogonal basis for functions 
with inner product defined by 

� λ 

f(x) · g(x) = f(x)g(x)dx 
0 

Considering the trigonometric functions as components of a vector: 

e�0(x) =(1, 0, 0, . . . , ) 

e�1(x) =(0, cos(k1x), 0, . . . , ) 

e�2(x) =(0, 0, sin(k1x), . . . , ) 
. 

. . . = .. 

e�n(x) =(. . . . . . , sin(knx), . . . , ) 

then these “basis vectors” satisfy � e�j = (λ/2)δij , where δij = 0 unless i = j. Theei · 
trick is just that, for an arbitrary function represented by the basis vectors, P (x) · 
e�j (x) = (λ/2)Pj . 

Complex Form of the Fourier Series 

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) 
terms was illustrated above. Functions that are even about the center of the fundamental 
domain (reflection symmetry) will have only even terms—all the sine terms will vanish. Func­
tions that are odd about the center of the fundamental domain (reflections across the center 
of the domain and then across the x­axis.) will have only odd terms—all the cosine terms will 
vanish. 

Functions with no odd or even symmetry will have both types of terms (odd and even) in 
its expansion. This is a restatement of the fact that any function can be decomposed into odd 
and even parts (see Eq. 17­3). 

This suggests a short­hand in Eq. 17­4 can be used that combines both odd and even series 
into one single form. However, because the odd terms will all be multiplied by the imaginary 
number ı, the coefficients will generally be complex. Also because cos(nx) = (exp(inx) + 
exp(−inx))/2, writing the sum in terms of exponential functions only will require that the 
sum must be over both positive and negative integers. 

For a periodic domain x ∈ (0, λ), f(x) = f(x + λ), the complex form of the fourier series 
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is given by: 

2πn 
∞

ıknxf (x) = 
� 

Ckn e where kn ≡ 
λ 

n= (17­12)−∞ 

1 
� λ 

f (x)e−ıknxdx=Ckn λ 0 

Because of the orthogonality of the basis functions exp(ıknx), the domain can be moved to 
any wavelength, the following is also true: 

∞
2πn ıknxf (x) = 

� 
Ckn e where kn ≡ 

λ 
n=� λ/2 

(17­13) 
1 

−∞ 

=Ckn λ −λ/2 
f (x)e−ıknxdx 

although the coefficients may have a different form. 


