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Oct. 05 2005: Lecture 9: 

Eigensystems of Matrix Equations 
Reading: 
Kreyszig Sections: §7.1 (pp:371–75) , §7.2 (pp:376–79) , §7.3 (pp:381–84) 

Eigenvalues and Eigenvectors of a Matrix 

The conditions for which general linear equation 

A�x = �b (9­1) 

has solutions for a given matrix A, fixed vector �b, and unknown vector �x have been determined. 
The operation of a matrix on a vector—whether as a physical process, or as a geometric 

transformation, or just a general linear equation—has also been discussed. 

Eigenvalues and eigenvectors are among the most important mathematical concepts with 
a very large number of applications in physics and engineering. 

An eigenvalue problem (associated with a matrix A) relates the operation of a matrix 
multiplication on a particular vector �x to its multiplication by a particular scalar λ. 

A�x = λ�x (9­2) 

This equation bespeaks that the matrix operation can be replaced—or is equivalent to—a 
stretching or contraction of the vector: “A has some vector �x for which its multiplication is 
simply a scalar multiplication operation by λ.” �x is an eigenvector of A and λ is �x’s associated 
eigenvalue. 

The condition that Eq. 9­2 has solutions is that its associated homogeneous equation: 

(A − λI)�x = �0 (9­3) 

has a zero determinant: 
det(A − λI) = 0 (9­4) 

Eq. 9­4 is a polynomial equation in λ (the power of the polynomial is the same as the size of 
the square matrix). 

The eigenvalue­eigenvector system in Eq. 9­2 is solved by the following process: 
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1. Solve the characteristic equation (Eq. 9­4) for each of its roots λi. 

2. Each root λi is used as an eigenvalue in Eq. 9­2 which is solved for its associated eigen­
vector x�i 

Mathematica r� Example: Lecture­09 
Matrix eigensystems and their geometrical interpretation 

Calculating eigenvectors and eigenvalues: “diagonalizing” a matrix 

The matrix operation on a vector that returns a vector that is in the same direction is an 
eigensystem. A physical system that is associated can be interpreted in many different ways: 

geometrically The vectors �x in Eq. 9­2 are the ones that are unchanged by the linear trans­
formation on the vector. 

iteratively The vector �x that is processed (either forward in time or iteratively) by A increases 
(or decreases if λ < 1) along its direction. 



�
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In fact, the eigensystem can be (and will be many times) generalized to other interpretations 
and generalized beyond linear matrix systems. 

Here are some examples where eigenvalues arise. These examples generalize beyond matrix 
eigenvalues. 

•	 As an analogy that will become real later, consider the “harmonic oscillator” equation 
for a mass, m, vibrating with a spring­force, k, this is simply Newton’s equation: 

d2x 
m = kx	 (9­5)
dt2 

If we treat the second derivative as some linear operator, Lspring on the position x, then 
this looks like an eigenvalue equation: 

k 
= x	 (9­6)Lspringx 
m 

•	 Letting the positions xi form a vector �x of a bunch of atoms of mass mi, the harmonic 
oscillator can be generalized to a bunch of atoms that are interacting as if they were 
attached to each other by springs: 

d2xi 
mi = 

dt2 
kij (xi − xj )	 (9­7) 

i’s near neighbors j 

For each position i, the j­terms can be added to each side, leaving and operator that 
looks like: 

⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

d2 
m1 dt2 −k12 0 −k14 . . .	 0 

d2 −k21 m2 dt2 −k23 0 . . . 0 
. .	 . . .	 . . . . 
. d2 . . (9­8)=Llattice .mi. 

dt2	 . 
. . . 

d2 
mN −1 dt2 −kN −1 N 

d2

⎝
 ⎠

0 0 . . .	 −kN N −1 mN dt2 

The operator Llattice has diagonal entries that have the spring (second­derivative) opera­
tor and one off­diagonal entry for each other atom that interacts with the atom associated 
with row i. The system of atoms can be written as: 

x = �x	 (9­9)k−1 Llattice�

which is another eigenvalue equation and solutions are constrained to have unit eigenvalues— 
these are the ‘normal modes.’ 

•	 To make the above example more concrete, consider a system of three masses connected 
by springs. 
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Figure 9­1: Four masses connected by four springs 

The equations of motion become:

⎛
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⎟⎟⎠


d2 −k12 −k13 −k14dt2 

d2 
0 0 

k12 + k13 + k14 0 0 0 
0 k12 0 0 
0 0 k13 0 

m1 x1 

x2 

x3 

x1 

x2 

x3 

−k12 

−k13 

m2 dt2 

d2 
0 0m2 dt2 

d2 0 0 0 k14x4 x4−k14 0 0 m2 dt2 

(9­10) 
which can be written as 

x = k�x (9­11)L4×4�

or 
x = �x (9­12)k−1 L4×4�

As will be discussed later, this system of equations can be “diagonalized” so that it 
becomes four independent equations. Diagonalization depends on finding the eigensystem 
for the operator. 

• odinger wave equation is:The one­dimensional Shr¨

h̄ d2ψ(x) 
+ U (x)ψ(x) = Eψ(x) (9­13)− 

2m dx2 
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where the second derivative represents the kinetic energy and U (x) is the spatial­dependent 
¯potential energy. The “Hamiltonian Operator” H = h d2 

+ U (x), operates on the 
2m dx2−

wavefunction ψ(x) and returns the wavefunction’s total energy multiplied by the wavevec­
tor; 

Hψ(x) = Eψ(x) (9­14) 

This is another important eigenvalue equation (and concept!) 

Symmetric, Skew­Symmetric, Orthogonal Matrices 

Three types of matrices occur repeatedly in physical models and applications. They can 
be placed into three categories according to the conditions that are associated with their 
eigenvalues: 

All real eigenvalues Symmetric matrices—those that have a ”mirror­plane” along the northwest– 
southeast diagonal (A = AT )—must have all real eigenvalues. 

Hermetian matrices—the complex analogs of symmetric matrices—in which the reflection 
across the diagonal is combined with a complex conjugate operation (aij = āji), must 
also have all real eigenvalues. 

All imaginary eigenvalues Skew­symmetric (diagonal mirror symmetry combined with a 
minus) matrices (−A = AT ) must have all complex eigenvalues. 

Skew­Hermitian matrices—­the complex analogs of skew­symmetric matrices (aij = −āji)— 
have all imaginary eigenvalues. 

Unitary Matrices: unit determinant Real matrices that satisfy AT = A−1 have the prop­
erty that product of all the eigenvalues is ±1. These are called orthogonal matrices and 
they have orthonormal rows. Their determinants are also ±1. 

¯T
This is generalized by complex matrices that satisfy A = A−1 . These are called unitary 
matrices and their (complex) determinants have magnitude 1. Orthogonal matrices, A, 
have the important physical property that they preserve the inner product: �x � = · y 
(A�x) · (A�y). When the orthogonal matrix is a rotation, the interpretation is that the 
vectors maintain their relationship to each other if they are both rotated. 
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Figure 9­2: The Symmetric (complex Hermitic), Skew­Symmetric (complex Skew­
Hermitian), Orthogonal, and Unitary Matrix sets characterized by the position of their 
eigenvalues in the complex plane. (Hermits live alone on the real axis; SkewHermits live 
alone on the imaginary axis) 

q cqckOrthogonal Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiplication of a vector by an orthogonal matrix is equivalent to an orthogonal geometric 
transformation on that vector. 

For othogonal transformation, the inner product between any two vectors is invariant. 
That is, the inner product of two vectors is always the same as the inner product of their 
images under an orthogonal transformation. Geometrically, the projection (or the angular 
relationship) is unchanged. This is characteristic of a rotation, or a reflection, or an inversion. 

Rotations, reflections, and inversions are orthogonal transformations. The product of or­
thogonal matrices is also an orthogonal matrix. 


