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Materials as “particle in a box” models: 

Synthesis & optical study of CdSe quantum dots 
 

Instructor: Francesco Stellacci 

OBJECTIVES 
 
9 Introduce the particle-wave duality principle 
9 Introduce the concept of quantum mechanical particles 
9 Electrons/photons interactions 
9 Introduce quantization and “particles in a box”  
9 Study the relationship between nanoparticle size and optical properties of CdSe 

quantum dots 
9 Gain experience in wet chemical synthesis and optical characterization methods 

 
Questions 
 
At the end of this laboratory experience you should be able to answer the following 
questions: 
 
1) What is the concept of “box” in quantum mechanics? 
 
2) Why an electron in a box can appear as a colored object? 
 
3) Why the size of a CdSe nanoparticle can determine the optical properties of such a 
particle?.   
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BACKGROUND 
 
Particle in a box: a way for visualizing quantum mechanics  

 
 

One of the most immediate consequences of the physical principles of quantum mechanics is the 
presence of discrete energy levels in real systems. 
 
The goal of modules β1, β2, and β3 is to provide students with a visual proof of this event, in order 
to make the understanding of the coming lectures in 3.012 easier. 
 
 
Let us first refresh some key concepts of modern physics: 
 
Particle Wave duality 
Every physical entity behaves at the same time as a particle and as a wave.  
Thus one has to describe physical objects as particle and waves at the same time. 
 
Light for example can be described as a wave or as a flux of particles called photons. Photons are 

particles whose energy can be directly related to their wave properties via the relation
λ

υ hchE == , 

where  is the Planck constant; and Jsh 626184.6= υ  is the oscillation frequency, while λ  is the 
wavelength. 
 
 
One concept to keep in mind in order to understand the following discussion is that photons 
interact with other particles is a very peculiar way, in fact these particle appear (via an emission 
mechanism) and disappear (via an absorption mechanism) commonly. In particular, the interaction 
of a photon with an electron leads to the disappearance of the photon and to an energy gain for the 
electron that equals the energy of the photon that disappeared. Similarly photons can “appear” when 
a particle loses energy. 
 
Because of this property we can use photons as very simple and versatile means of providing energy 
to other particles. 
 
Because of this property we can use photons as very simple and versatile means of providing energy 
to other particles. In particular photon-electrons interactions are the cause of colors in materials.  
Color theory is a complex science, indeed the color of a material is determined by the various types 
of interactions that photon and electron have (absorption, reflection, scattering, non-linear 
absorption and conversion, and emission). In this lab we will try to understand the two main forms 
of interactions (that happen to be the easiest to understand ☺) absorption and emission. 
 
Absorption is the disappearance of a photon of a given energy (i.e. color) with the simultaneous gain 
of the same amount of energy for one electron in a material. The probability of this event is called 
the absorption cross section. 
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Emission is the appearance of a photon of a given energy (i.e. color) with the simultaneous loss of 
the same amount of energy for one electron in a material. The probability of this event is called the 
emission (or fluorescence) quantum yield.  
In order for both these phenomena to happen the electron need has to be able to “exist” in two 
different states whose energy difference equals the energy of the absorbed/emitted photons. 
 
(This may sound complex, but it is not, also is really nice to see, I promise!) 
 
Particle in an infinite well 
 
 
 
 
 
 
 
 
 
 
 
 
Let us consider now a particle confined in one dimension (x) in between two infinite energy barriers. 
A physical way of representing such situation is to define a potential  
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(in any potential the origin can be chosen freely, thus the 0 value of V in the region where the 
particle is confined was chosen for the sake of making the calculation easier. Any other number 
would be equally acceptable, leading to the same results.) 
 
 
A particle (in this specific case an electron) is described by its wavefunction ( t,r )ψ , a function 
defined in all places in space (r) and time (t). The values of this function are complex numbers and 
are related to the probability of finding that particle in that given position of space (r) at that given 
time t. 
 
In our case we will concentrate on a one dimensional problem, thus we will substitute r with x, 
moreover we will assume that the wavefunction can be divided in two parts one that depends on 
time but not on space and the other that depends on space and not time, ( ) ( ) )(, txtx ξϕψ =  
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In this case the spatially varying part of the equation has to obey the time independent Schrödinger 
equation:  
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( ) ( ) ( ) DinxExxVx
xm

DinEV
m

1)(
2

3)(
2

2

22

2
2

ϕϕϕ

ϕϕϕ

=+
∂
∂

−

=+∇−

h

h rrrr
 

 

where 
π2
h

=h  , V is the potential energy of the system and E is the total energy of the particle. 

 
The existence, for x>d and x<0, of an infinite potential (i.e. a very large barrier) prevents the particle 
from ever being in those regions of space. Being the wavefunction a measure of the probability of 
finding the particle in a region of space, we have to impose ( ) 0=xϕ  for x>d and x<0. 
 
For 0<x<d the time independent Schrödinger equation becomes (being V(x)=0) 
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This is a classical wave equation whose general solution is  
( ) ikxikx BeAex −+=ϕ  with A and B being complex number. 

 
In order to prove that this is the correct solution and to find the possible values of k it is enough to 
substitute this function back in the Schrödinger equation 
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To summarize, by simply looking at the potential we have defined the wavefunction as: 
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This result just states that a particle cannot be outside insurmountable walls. Even in the classical 
case this would be true. 
 
One of the key properties of wave functions in that they are continuous, thus we have to impose 
that 0)()0( == dϕϕ . 
 
This means that: BABA −=>−−=+= 0)0(ϕ  thus ( )kxiAx sin2)( =ϕ  
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Similarly, ( ) 0sin2)( == kdiAdϕ . This second equation is true only for certain values of k, 

specifically 
d

nk π
= . 

 
By using these values of k in the expression of the total energy of the system we have: 
 

2
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Thus the only energy values that this particle can have are the ones expressed in the equation above. 
 
The main consequences are that (1) the particle cannot have zero energy, (2) the particle can have 
only discrete states. 
 
Table 1 First 10 energy levels for a particle in a infinite well of varying width. The mass on the 
electron used to compute these values was: 9.10953 10-31 Kg. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Quantum number Energy (E)      
n d (Ǻ)= 2 6 10 14 18 22 

1  9.400836866 1.044537 0.376033 0.191854 0.11606 0.077693 
2  37.60334747 4.17815 1.504134 0.767415 0.464239 0.310771 
3  84.6075318 9.400837 3.384301 1.726684 1.044537 0.699236 
4  150.4133899 16.7126 6.016536 3.069661 1.856955 1.243086 
5  235.0209217 26.11344 9.400837 4.796345 2.901493 1.942322 
6  338.4301272 37.60335 13.53721 6.906737 4.17815 2.796943 
7  460.6410064 51.18233 18.42564 9.400837 5.686926 3.80695 
8  601.6535594 66.8504 24.06614 12.27864 7.427822 4.972343 
9  761.4677862 84.60753 30.45871 15.54016 9.400837 6.293122 

10  940.0836866 104.4537 37.60335 19.18538 11.60597 7.769287 
        
        

ΔE2-1 eV 28.2025106 3.133612 1.1281 0.575561 0.348179 0.233079 
 nm 43.96246379 395.6622 1099.062 2154.161 3560.96 5319.458 

 
 
 
If the electron in the well would be considered as a particle in a classical way then any photon that 
would interact with the electron would be absorbed. In reality the electron is also a wave and thus it 
can have only specific energies. As a consequence the electron can interact with a photon (absorbing 
it) only if the energy of such photon equals the energy difference between the state the electron is in 
(typically n=1) and one of the other states of the system. 
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Quantum Dots  

Quantum dots are semiconductor nanocrystals having dimensions typically between ~1-10 nm 
[1-7]. Because of their very small size, quantum dots exhibit different optoelectronic behavior 
than bulk semiconductors of the same composition.  In particular, the confined dimensions result 
in a quantization of the bulk electronic bands and a widening of the gap (called a blue shift) 
between the valence band and conduction band, which is size dependent.    Thus a quantum dot 
can be seen in analogy to the “particle in a box” model above (or “particle in a sphere” model), 
where ΔE2-1 increases with decreasing d. 
 

Bulk Quantum well Quantum wire Quantum
dot

10 – 100 Å

BulkBulk Quantum wellQuantum well Quantum wireQuantum wire Quantum
dot

Quantum
dot

10 – 100 Å

 
 
 
 
 
 
 
 
The practical consequence of quantized energy states in semiconductor nanocrystals is seen 
when light interacts with these materials to create excitons, or electron-hole pairs.  When an 
exciton is created, it has a natural associated length scale, called the exciton Bohr radius, due to 
the electron-hole Coulombic attraction [1,3,7]. The length scale is defined through the electron 
and hole wave functions, which give the probability of finding an electron/hole at a given 
position. Quantum confinement occurs when the nanocrystal dimensions are smaller than the 
exciton Bohr radius (about 5.6 nm for CdSe) [1]. 
 
 
 
 
 
 
 
 
 
As a consequence, absorption/excitation occurs for specific discrete values of the incident photon 
energy.  Upon relaxation of the excited state through electron-hole recombination, the emitted 
photons also exhibit well-defined energies.  Note that the emission peaks occur at slightly lower 
energy compared to the absorption peak (also known as a red shift).   
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ZnSe quantum dots absorption and emission spectra. C.A. Smith, H.W.H. Lee, V.J. Leppert, S.H. Risbud, 
Applied Physics Letters 75, 1659 (1999). 
 
 

Because of their narrow, intense fluorescence spectra which are tunable though size, there is 
strong technological interest in quantum dots for optoelectronic applications.  For example, one 
area of strong R&D is quantum dot fluorescent labels/tags for biological assays and sensors, to 
replace fluorescent organic molecules [4].  High quality QDs exhibit less nonradiative decay than 
organic dyes, providing higher fluorescence quantum efficiency.  QD efficiency is higher than 
bulk semiconductors as well, due to the localization of electron-hole pairs imposed by the QD 
surface.  
 
The quality (intensity and sharpness) of the fluorescence spectra from quantum dots is affected 
by a number of variables: 
 

• Size 

• Size distribution  

• Phase/chemistry  

• Interparticle distance  

• Surface termination  
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CdSe Dots 

CdSe is a II-VI semiconductor with a bulk band gap of ~1.7 eV, with a corresponding emission 
of λ=760 nm.  For CdSe quantum dots, emission wavelengths can range from 450-650 nm, 
depending upon size, covering much of the visible spectrum range.  CdSe nanocrystals form in 
the hexagonal wurtzite structure, which exhibits four-fold coordination for both Cd and Se atoms 
[8].  CdSe can also form in the zinc blende structure, a variant of the diamond cubic structure, 
which also has four-fold coordination. 
 
 120° 
 
 
 
 
 
 
 
In CdSe, the Cd 5s orbitals constitute the LUMO, while Se 4p orbitals constitute the HOMO.  
The first excited hole-electron pair for CdSe has been identified as the 1S3/21Se [1,3]. Other 
discrete transitions are also sometimes observable in the absorbance spectra for CdSe 
nanocrystals.  CdSe nanocrystals tend to be prolate spheres, with an aspect ratio of 1.1-1.3, 
where the long axis corresponds to the c-axis of the wurtzite structure [7]. 
  

 

Zinc blende structure

Wurtzite 
structure 

Cd 
 
Se
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SYNTHESIS OUTLINE 
The synthesis procedure, adapted from M. Bawendi’s group, requires the preparation of three 
separate solutions which are ultimately combined to nucleate and grow the CdSe nanoparticles. 
 
Reagents and Solvents 
 
Cd(OH): source of Cd.  This precursor is safer (less toxic) than Cd(CH )3 2 compound often used 
in the archival literature [6]. 
 
Oleic acid: acts as a surfactant. [2,6], stabilizing the dispersion 
 
Trioctylphosphine: (CH CH CH CH CH CH CH CH )3 2 2 2 2 2 2 2 3P  A coordinating solvent for Se that 
stabilizes the nanoparticles against flocculation during synthesis.  After synthesis TOP coats the 
nanoparticles, providing electronic insulation and passivating the nanoparticle surface [3,5].  
 
elemental Se: source of Se 
 
Squalene (shark oil): a viscous, noncoordinating, high boiling point solvent [2].   
 
Oleylamine: acts as a surfactant [5]. 
 
 
Solution Preparation and Reaction 
 
First Solution: The reaction medium 
 
A mixture of 5 ml of squalene, 8 ml of oleylamine 8 ml and 3.5 ml of TOP is prepared in a 3-
neck round bottom flask. After sealing the flask, the solution is degassed with nitrogen while 
heating to 3600C. 
 
 
Second solution: Cadmium containing solution 
 
150 mg of Cd(OH) – 1 mmol—are dissolved in 2 millimoles (0.64 ml) of Oleic acid and 3.4 ml 
of trioctylphosphine (TOP).  Dispersion is heated to 100C and degassed for 1h. 
 
Third solution: Se containing solution 
 
This solution has been pre-prepared in a glove box by Johnatan Steckel in the group of Prof. 
Moungi Bawendi. It was prepared by dissolving 11.8 mg of elemental Se in 100 ml of TOP. 
 
 
Once the first reaction reaches 3600C, add 6 ml of the third solution are added to the second 
solution, then this mixture is rapidly injected to the entire mixture into the 1st solution reaction 
flask.  The reaction vessel is then quickly removed from its heat source and allowed to cool at 
room temperature. 
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