
3.014 Materials Laboratory 
Oct. 13th  – Oct. 20th , 2006 

Lab Week 2 – Module γ1


Derivative Structures 


Instructor: Meri Treska 


OBJECTIVES 

9 Review principles of x-ray scattering from crystalline materials 

9 Learn how to conduct x-ray powder diffraction experiments and use PDFs 

9 Study the inter-relationship of different crystal structures


SUMMARY OF TASKS 

1) Calculate structure factor for materials to be investigated 

2) Prepare samples for x-ray powder diffraction  

2) Obtain x-ray scattering patterns for all materials 

3) Compare obtained patterns with calculations and powder diffraction files (PDFs)  

4) Perform peak fitting to determine percent crystallinity and crystallite size 

1 



BACKGROUND 

X-ray Diffraction from Crystalline Materials 

As discussed in 3.012, a periodic arrangement of atoms will give rise to constructive 

interference of scattered radiation having a wavelength λ comparable to the periodicity d 

when Bragg’s law is satisfied: 

n = 2 sin  λ d θ 

where n is an integer and θ is the angle of incidence. 

Bragg’s law tells us necessary conditions for diffraction, but provides no information 

regarding peak intensities. To use x-ray diffraction as a tool for materials identification, 

we must understand the relationship between structure/chemistry and the intensity of 

diffracted x-rays. 

Recall from 3.012 class that for a 1d array of atoms, the condition for constructive 

interference can be determined as follows: 
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Defining s = , the condition for 1d constructive interference becomes: 
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where h, k and l are the Miller indices of the scattering plane. 

For a single unit cell having M atoms, the scattered amplitude is proportional to the 

structure factor, defined as: 
M r ur  
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ur 
where rn is the atomic position vector for the nth atom in the unit cell: 
r r r r 
rn = xn + nb zna y + c 

where (xn, yn, zn) are the atomic position coordinates. 

Example: for a BCC structure, there are 2 atoms/cell at (0,0,0) and (1/2,1/2,1/2). 

The parmater fn is the atomic scattering factor, proportional to the atomic number Z of 

the nth atom. Hence, atoms of high Z scatter more strongly than light elements.  The 

atomic scattering factor is a function of θ and λ. 
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r
Substituting rn into the structure factor: 
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For a BCC crystal: 

  h k  l  F = f exp 2 π i(0) + f exp 2 π i + + = f + f exp π i h  ( + k + l)hkl [ ] 
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Fhkl = 2 f h+k+l = even 

Fhkl = 0 h+k+l = odd 

The scattered intensity is related to the structure factor: 

2 2
Icoh ∝ FF* =
 = 4 f h+k+l = evenFhkl 

Icoh = 0	 h+k+l = odd 

Note that the total coherent intensity will be a sum of the contributions of all unit cells in 

the crystal. For a BCC crystal, reflections from planes with Miller indices where h+k+l is 

an odd integer will be absent from the diffraction pattern, while reflections from (110), 

(200), (211), etc. will be present with reduced intensity as h+k+l increases.  
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In our hypothetical case above, constructive interference occurs only at the exact Bragg 

angle and the I vs. 2θ curve exhibits sharp lines of intensity.  In reality, diffraction peaks 

exhibit finite breadth, due both to instrumental and material effects.  An important 

source of line broadening in polycrystalline materials is finite crystal size.  In crystals of 

finite dimensions, there is incomplete destructive interference of waves scattered from 

angles slightly deviating from the Bragg angle.  If we define the angular width of a peak 

as: 

B = 
1
2 

(2θ1 − 2θ2 ) 

then the average crystal size can be estimated from the Scherrer formula as: 

0.9λt = 
B cos θB 

Interplanar spacings can be calculated for different hkl planes from geometric 

relationships for a given crystal system: 
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Cubic: d = 2a 

h2 k 2 l 2 
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Bonding-Structure Relationships 

Covalent bonding 
Inorganic materials 

Materials that exhibit covalent bonding pack in arrangements that reflect the directional 

nature of their bonds. For example, sp3 hybridization in diamond and silicon mandates 

that atoms pack in these materials with tetrahedral coordination.  These materials adopt 

the diamond cubic structure, a derivative of the FCC structure in which ½ of the 

tetrahedral interstitial sites are filled. 

diamond cubic structure 
in 2 orientations 

Images from 
http://www.uncp.edu/home/mcclurem/lattice/ 

2 tetrahedral sites in a FCC lattice 

Along with silicon, numerous semiconductor alloys exhibit significant covalent character 

in their bonding, often adopting the zinc blende structure, a derivative structure of the 

diamond cubic structure.  Examples include the III-V compounds GaAs, GaP, GaSb, 

AlP, AlAs, InSb, InP, InAs, and the II-VI compounds ZnS, ZnSe, ZnTe, CdTe.     

Zinc blende structure of ZnS: a FCC 
arrangement of sulfur atoms with zinc atoms 
filling ½ of the total tetrahedral sites 
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Courtesy of Dr. Mark McClure. Used with permission.

http://www.uncp.edu/home/mcclurem/lattice/


Chalcopyrite, CuFeS2, a mineral, has a crystal structure that can be viewed as 

derivative of the zinc blende structure. 

Structure of CuFeS2: Cu (solid), 
Fe (shaded), S (unfilled). 

Polymers 

Polymers are covalently bonded long chain molecules composed of repeating units 

made of carbon and hydrogen, and sometimes oxygen, nitrogen, sulfur, silicon and/or 

fluorine. As with inorganic materials, the covalent bonding in polymers imposes 

directionality on their spatial arrangement into periodic structures. Polymer chains 

exhibit weak intermolecular forces due to van der Waals attractions. The ability of 

polymer chains to pack into an ordered array depends strongly on the stereoregularity 

of their pendant groups. For example, depending on the method of polymerization, 

polystyrene may exhibit isotactic, syndiotactic or atactic structure. Atactic polystyrene, 

is entirely amorphous due to the random arrangement of the pendant phenyl groups, 

while syndiotactic and isotactic polystyrene, having more regular structures, exhibit 

crystallinity. 

Isotactic PS (highly crystalline)Isotactic PS (highly crystalline)

HH

C CC C

HH HH Syndiotactic PS (semi-crystalline)Syndiotactic PS (semi-crystalline)
Styrene monomerStyrene monomer

Atactic PS (amorphous)Atactic PS (amorphous)
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Polymers form into thin lamellar crystallites through a chain folding process, with their 

backbones oriented along one of the crystal axes, typically the c-axis.  Chains may pack 

with zig-zag (all trans) or helical conformations of the backbone.  Polyethylene, the 

largest volume commercial thermoplastic, arranges into an orthorhombic crystal with 

chains aligned along the c-axis in a zig-zag conformation. 

unit cell of polyethylene 

Figures removed due to copyright restrictions.

PE crystallite formed by 

chain folding 


Unlike inorganic materials, polymers never crystallize into cubic structures.  This again 

can be explained based on the fact that bonding in polymer crystals is inherently 

anisotropic—strong covalent bonds exist along the chain axes, while weak secondary 

bonds provide cohesivity between chains.   

Ionic Bonding 
Many inorganic materials such as halides, oxides and silicates exhibit strong ionic 

character in their bonding. As a result, packing in these systems is dictated by 
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electrostatic forces—the structures chosen by nature are those that maximize 

interactions between ions of opposite charge while minimizing contact between like-

charged ions and maintaining electrical neutrality.  Pauling’s rules codify this notion and 

provide rationalization for structural tendencies observed in systems with ionic bonding.   

As a consequence of electrostatics, ionic crystals create ordered arrangements of 

polyhedra, in which cations are in contact with a maximum number of surrounding 

anions, the number depending on the ratio of the cation to anion radius, RC/RA. 

Coordination Number Anion arrangement Minimum stable RC/RA 

8 corners of cube 0.732 

6 Corners of octahedron 0.414 

4 Corners of tetrahedron 0.225 

3 corners of triangle 0.155 

2 co-linear 0 

Often ionic crystals consist of a close packed lattice of anions with cations placed into 

interstitial sites. An example of such a material is MgO, which exhibits a radius ratio of 

0.593 and crystallizes in the halite (rock salt) structure.  Other materials that crystallize 

in this structure include: NaCl, KCl, LiF, KBr, CaO, BaO, CdO, VO, FeO, CoO, NiO.   

Halite structure of MgO: a FCC arrangement of 
center octahedral sites in a FCC lattice O2- ions with Mg2+ ions filling all octahedral sites. 

Courtesy of Dr. Mark McClure. Used with permission. 

Images from 
http://www.uncp.edu/home/mcclurem/lattice/ 
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Although of similar stoichiometry, the large radius ratio of CsCl, RC/RA= 0.922, favors a 

larger coordination number.  This compound thus crystallizes in a BCC derivative 

structure in which Cl atoms sit on the cube corners and Cs atoms in the center of the 

cube. 

 CsCl structure 

Metallic Bonding 
Metal atoms in a metallic crystal bond through delocalization of valence electrons.  The 

bonding in metals is largely nondirectional as a result, so that metals and metal alloys 

most often adopt close packed atomic arrangements, namely the face centered cubic 

(FCC) and hexagonal close-packed (HCP) structures, or the slightly lower density body-

centered cubic (BCC) structure.   

Materials 
Materials to be investigated include: CsCl, NaCl, Fe, Al, Si, ZnS, CuFeS2 (chalcopyrite), 

polyethylene, polypropylene 
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