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LABORATORY 2: Module β1 

Radius Ratios and Symmetry in Ionic Crystals 

Instructor: Francesco Stellacci 

Objectives 
Discover principles of X-ray diffraction from crystalline materials 


Collect X-ray powder diffraction patterns and analyze using Powder Diffraction File (PDF) 

Explore relationship between relative ion sizes and crystal structure symmetries


Tasks 
Calculate structure factors of materials investigated 


Prepare samples for X-ray powder diffraction 

Obtain X-ray powder diffraction patterns for 4-5 perovskite-structure oxides 


Compare patterns obtained to calculations and PDF 

Apply peak fitting routines to determine lattice parameters 


Relate composition, lattice parameter, ionic radius, radius ratio, and crystal symmetry


Materials 

CaTiO3, BaTiO3, SrTiO3, PbTiO3, CaZrO3, PbZrO3 

Introduction 

Many inorganic materials, such as halides like NaCl and oxides like MgO, TiO2 

or Al2O3, exhibit strong ionic character in their atomic bonding.  As a result, atom 

packing in these systems is dictated by electrostatic forces—the structures chosen by 

nature are those that maximize interactions between ions of opposite charge while 

minimizing contact between like-charged ions and maintaining electrical neutrality. 

Structural consideration of ionic solids begins with the Goldschmidt1 ionic model, which 

assumes that ions are essentially charged, incompressible, non-polarizable spheres with a 

definable radius. As a consequence of electrostatic interactions, ionic crystals create 

ordered arrangements of coordination polyhedra, in which cations are in contact with a 

maximum number of surrounding anions, the number depending on the ratio of the cation 

radius to the anion radius, rC/rA (Table 1), and to a lesser extent cation charge.  A large 
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highly charged cation (such as Ba2+ or U4+) can accommodate a larger number of anions 

around it. U4+ cations in UO2 are 8-coordinated by O2– anions in the fluorite structure 

Fig. 1. (8:4) Fluorite structure of UO2, with rC/rA ratio = 0.724. The U4+ cations 
form a cubic face-centered arrangement, but alternatively can be thought of as filling 
every other cube interstice in the simple cubic arrangement of O2– anions, or as 
[UO8] coordination cubes linked by sharing edges.  In the (4:8) anti-fluorite structure 
of Na2O, the roles of anion and cation are reversed, with rA/rC = 0.697, Na2+ cations 
are four-coordinated to O2– anions,. and [ONa8] cubes sharing edges. 

(Fig. 1), while Ba2+ cations in perovskite-structure BaTiO3 (Fig. 5, see below) are 12-

coordinated by O2– anions). Conversely, smaller and less-highly charged cations cannot 

accommodate so many anions around them (Li2O and Na2O adopt the anti-fluorite 

structure (Fig. 1) in which the Li1+ and Na1+ cations are 4-coordinated by oxygen). 

Table 1. Preferred Cation Coordination in Ionic Crystals 

Cation Coordination No. Anion arrangement Minimum stable rC/rA 

8 corners of cube 0.732 

6 corners of octahedron 0.414 

4 corners of tetrahedron 0.225 

3 corners of triangle 0.155 

2 co-linear 0 
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Of course, the anion point of view may equally be adopted.  In the Na2O example just 

mentioned, eight (small) Na1+ cations surround each (larger) O2– anion.  In some cases  

(like BaO), the cation could accommodate a larger number of anions around it (e.g. 8 or 

12) than the 6 it has, but the anion cannot accommodate around itself the geometrically 

consequential number of cations dictated by stoichiometry.  

Table 2. Coordination-Dependent Ionic Radii (Shannon & Prewitt3) 

Ion 
Radius r (pm) 

CN = 12 
Radius r (pm) 

CN = 8 
Radius r (pm) 

CN = 6 
Radius r (pm) 

CN = 4 
Li1+ 76 59 

Na1+ 118 102 99 

K1+ 185 138 

Rb1+ 161 152 

Cs1+ 177 167 

F1- 135 133 

Cl1- 184 181 

Mg2+ 72 

Ca2+ 134 112 100 

Sr2+ 144 126 118 

Pb2+ 149 129 119 

Ba2+ 161 142 135 

Ti4+ 61 

Nb5+ 64 

Zr4+ 72 

O2- 142 140 138 

Ionic radii were first computed by the crystal chemist and Nobelist Linus Pauling2 

(also of X-ray crystallography and Vitamin C fame), but revised radii that take into 

account polarization of the ion cores, and thus depend on coordination, were calculated 
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more recently by Shannon and Prewitt 3 and are those now generally used (Table 2). 

Some of the stablest, and therefore most pervasive, ionic structures are those in which 

radius-ratio criteria are well satisfied for both anions and cations.  Classic examples are 

those binary equiatomic compounds that crystallize in the rocksalt (halite) structure (Fig. 

2b)—among them NaCl, KCl, LiF, Kbr, CaO, SrO, BaO, CdO, VO, Fe1–xO, CoO, NiO, 

etc.—which have cation-anion radius ratios rC/rA near 0.5 (NaCl 0.563, MgO 0.514) and 

comprise cation (or anion) coordination octahedral (e.g. [NaCl6] octahedral) which share 

edges. For more similar ion sizes, the CsCl structure is preferred (CsCl itself has rC/rA = 

0.96) in which Cs1+ ions sit in the centers of cubes of Cl– ions ([CsCl8] cubes) that share 

faces (Fig. 2).   

Fig. 2. 	(8:8) structure of CsCl, in which each ion is 8-coordinated by ions 
of the opposite charge, may also be thought of as [CsCl8] 
coordination cubes that share all faces. 

Linus Pauling’s rules for crystalline compounds (Table 3) codify these notions 

and provide rationalization for structural tendencies observed in systems with ionic 

bonding. Despite being couched in terms of ion size, these rules turn out to be essentially 

driven more by the consideration of minimizing electrostatic energy (which can be 

accounted in a proper Madelung summation), than by the geometric necessities of ionic 

radii, however represented 
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Table 3. Pauling’s Rules for Crystalline Ionic Compounds 

Rule 1. Coordination.  A coordination polyhedron of anions is formed 
around every cation (and vice versa) and is stable only if the cation is in 
contact with each of its neighboring anions.  The distance between 
anions and cations is thus the sum of the their ionic radii, and the 
coordination number of the cation will be maximized subject to the 
criterion of maintaining cation-anion contact.  
Rule 2. Electrostatic  Valency. The total strength of valency “bonds” 
that reach an anion form all of its neighboring cations equals the charge 
of the anion. 
Rule 3. Polyhedral Linking. Cation coordination polyhedra tend to be 
linked through sharing of anions, at corners first, then edges, then 
faces—in this order because of the electrostatic repulsion between 
cations. 
Rule 4. Cation Evasion. The electrostatic repulsion between cations is 
greatest for cations of high charge and small coordination number.  Thus, 
in crystals containing different cations, those with higher charge and 
smaller coordination number are likely to share fewer polyhedral 
elements. 
Rule 5. Crystal Homogeneity.  The number of structurally distinct sites 
in a crystalline arrangement of ions tends to be small.  This condition 
ensures that chemically similar atoms experience similar environments 

. 

In fact, ionic radii and radius ratios do not, in actuality, do a very good job at all 

in predicting the structure adopted by a given compound, even in such simple binary 

compounds as alkali halides, for which Table 1 would predict (4:4) zincblende structure 

for 0.225 < rc/rA < 0.414, (6:6) rocksalt structure for 0.414 < rC/rA < 0.732, and (8:8) CsCl 

structure for 1 > rC/rA > 0.732.  In actuality, LiF (rC
IV/rA

IV = 0.451) only just escapes 

zincblende structure (the Li1+ ion does almost rattle around in its cage of six F1– ions), but 

LiBr (rC
VI/rA

VI = 0.388) and LiI (rC
VI/rA

VI = 0.345), which also adopt the rocksalt 

structure, are incorrectly predicted as zincblende.  NaF (rC
VI/rA

VI = 0.767 ), KF (rC
VI/rA

VI 

= 1.038), RbF (rC
VI/rA

VI = 1.128), and CsF (rC
VI/rA

VI = 1.256), all of which adopt the 

rocksalt structure, are likewise incorrectly predicted as CsCl.  Ionic radii and radius ratios 

must therefore be used with care in understanding compound structures. 
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Often ionic crystals can be alternatively described as a close packed lattice of 

anions into which cations are placed on interstitial sites (Fig. 3a).  In this description of 

the rocksalt structure of MgO, Mg2+ cations occupy every octahedral interstice in a cubic 

close-packed array of O2– anions. The corundum structure adopted by α-Al2O3, consists 

  (a)      (b)  

Fig. 3. (a) Octahedral cages (green) surrounding octahedral interstitial sites in a cubic 
close-packed array of anions.  (b) Placement of Mg2+ cations (red) in every octahedral 
interstice of a close-packed array of O2– anions to form the rocksalt structure adopted by 
the compound MgO. Images from http://www.uncp.edu/home/mcclurem/lattice/ 

of a (nearly) close-packed hexagonal assembly of O2– anions, two-thirds of the octahedral 

interstices of which are occupied by Al3+ cations.  In magnetite, Fe3O4, which adopts the 

(inverse) spinel structure, Fe3+ cations occupy 1/8 of the tetrahedral interstices and Fe2+ 

cations 1/2 the octahedral in a cubic close-packed array of O2– anions. Perovskite 

compounds—the subject of this laboratory experiment, with chemical formulae of the 

form ABO3—can be thought of as a cubic close-packed array of O2– anions in which 1/3 

of the octahedral interstices are occupied by A cations and 1/6 of the tetrahedral 

interstices by B cations.  Pauling’s first rule still applies here, in that the cation placed in 

an interstitial site must not “rattle” around in the interstitial space if it is to stabilize the 

crystal structure. 

The crystalline mineral pervoskite (CaTiO3), from which the associated structural 

class takes its name, was discovered in the Russian Ural Mountains by Gustav Rose in 

1839 and named for the Russian mineralogist L. A. Perovski (1792-1856).  A more 
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illuminating description of the idealized perovskite structure involves linking of Pauling’s 

coordination polyhedra (Fig. 4b) in accordance with Pauling’s rules.  [TiO6] octahedra 

Figure removed due to copyright restrictions. 

Fig. 4. 	Two representations of the pervoskite structure. a,b) Ti-centered representation of 
BaTiO3, showing uniaxial displacement of undersized Ti4+ cation in the tetragonal 
variant below the Curie temperature in a) and the average cubic ideal structure 
above the Curie temperature in b). c) Ca (blue)-centered representation of 
CaZrO3, showing linkage of [ZrO6] coordination octahedra (yellow) through 
corner sharing of oxygen anions (red).  The tilting of the [ZrO6] octahedra is 
typical of non-ideal perovskites with tolerance parameter 0.9 < t < 1.0. 
(Reproduced from W. D. Kingery et al., ref. 5). 

comprising small, highly-charged Ti4+ cations surrounded by 6 O2– anions share only 

corners (unlike [MgO6] octahedral in the rocksalt structure, comprising larger, less highly 

charged Mg2+ cations, which share edges), in keeping with Pauling’s third rule, in a cubic 

arrangement.  In this configuration, O2– anions thus share valency “bonds” with two  Ti4+ 

cations. The arrangement also defines a large interstitial space which can be occupied by 

a large cation of lower charge, in this case Ca2+, which is 12-coordinated by O2– anions in 

[CaO12] truncated cubes that share square faces with each other and triangular faces with 

the [TiO6] octahedral, as allowed by Pauling’s fourth rule. O2– anions thus additionally 

share valency “bonds” with four Ca2+ cations, satisfying Pauling’s second rule (the two 

Ti4+ cations each contribute 2×4/6 = 16/12 “valency bonds” and the four Ca2+ cations 

4×2/12 = 8/12 “valency bonds” to each O2– anion, for a total of 24/12 = 2 “bonds,” which 

equals the ionic charge –2= 2 of the O2- anions). The fact that the ideal crystal 
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structure of perovskite, in fact, satisfies Pauling’s Rules rather well implies substantially 

ionic character to the bonding—although it is known that the Ti-O bond has significant 

covalency and Ti is 6-coordinated by O because this maximizes covalent bonding, not 

because the ionic radius-ratio rTi4+/rO2– = 75 pm/126 pm = 0.60 (in TiO2) is consistent with 

octahedral ionic coordination. 

The perovskite structure is adopted by a large number of other A2+B4+O3 

compounds, among them (besides CaTiO3) SrTiO3, BaTiO3, PbTiO3, PbZrO3 and 

CaZrO3, which you will study, and additionally compounds such as KNbO3 in which a 

large K1+ cation is charge-compensated by a small Nb5+ cation.  The radius-ratio criterion 

(Pauling’s first rule) is, however, precisely satisfied only by SrTiO3 (which is cubic); 

other combinations of A and B cations do not ensure that the cations are in “contact” with 

O2– anions. Geometrical contact of hard ion spheres occurs only if (rA + rO) = √2(rB + 

rO). A structural tolerance parameter4 can be thus defined 

t  = (rA + rO)/√2(rB + rO) (1) 

that defines the limits of 6-fold and 12-fold coordination for the B and A cations in this 

structure type, and the perovskite structure type is stable generally only within the range  

Table 4. Tolerance Parameter for Perovskite Structure Compounds 

CaZrO3 CaTiO3 PbZrO3 SrTiO3 PbTiO3 BaTiO3 KNbO3 

0.914 0.964 0.964 0.999 1.017 1.059 1.127 

0.75 < t < 1.10 (Table 4). For t < 0.90, a cooperative buckling of the corner-sharing 

octahedra occurs that increases the lattice parameter.  For 0.90 < t < 1, small distortions 

or rotations of the octahedra occur (Fig. 4c) that provide cation-anion “contact” but lower 

the crystal symmetry from cubic to orthorhombic. For t > 1, highly correlated uniaxial 

displacements of the B cations occur (Fig. 5a) that convert the cubic symmetry to 

tetragonal symmetry by selective elongation of one axis. Presence of these distortions, 

rotations or displacements is easily distinguished by the appearance in diffraction patterns 
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of diffraction maxima that are forbidden (have zero structure factor, see below) for the 

cubic structure and the splitting of certain diffraction peaks (e.g. those of the family 

{h00}) that would have arisen from crystallographically equivalent planes in the cubic 

system.  They are also responsible for an intriguing array of unusual electrical properties 

(ferroelectricity, piezoelectricity [BaTiO3, Pb(Zr,Ti)O3], electrostriction [Pb(Mg,Nb)O3, 

fast ion conduction [LaMnO3]) and magnetic properties (magnetoresistance 

[(La,Ca)MnO3, (La,Sr)CoO3]). The cubic→tetragonal transformation temperature 

corresponds to the Curie temperature, below which ferroelectric behavior appears. 

Courtesy of Dr. Mark McClure. Used with permission. 

Fig. 5. Distortions of the pervoskite structure accompanying departures from ideality in 
ion radius ratio. a) Highly correlated uniaxial displacements of undersized Ti4+ 
cation that result in a tetragonal variant of BaTiO3 (t = 1.059), stable below the 
Curie temperature but reverting to b) an average-cubic ideal structure above the 
Curie temperature when the directions of the displacement become uncorrelated. 
c) Tilting of the [ZrO6] octahedra in CaZrO3 (t = 0.914), typical of non-ideal 
perovskites with overlarge B cations and tolerance parameters 0.9 < t < 1.0, that 
results in orthorhombic symmetry. 
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Even in SrTiO3, the ideal cubic perovskite arrangement is stable as a sort of 

“average” structure only above –55˚ C. Below that critical temperature, SrTiO3 

undergoes a tetragonal distortion, like that of room-temperature BaTiO3 and PbTiO3, 

whose own cubic→tetragonal transformation temperatures are 130˚ C and 490 ˚C, 

respectively. 
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