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LN–5 IDLE MIND SOLUTIONS

1. (a) Schematic X–ray spectrum from a Mo target.

Kα and Kβ constitute characteristic
target radiation.

In
te

ns
ity

λSWL λKαλKβ

Bremsstrahlung

λ

MoKα

MoKβ

e–

2e–

electron   
removed
from 
K shell
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(b) Characteristic Radiation:
After the vacancy is generated in the K
shell, it may be filled by an electron
transition from either the L shell (Mo Kα
line) or from the M shell (Mo Kβ line).
Since the Kβ transition is less likely to
take place, its intensity on the spectrum
is less than that of the Kα line.

Bremsstrahlung:
Bremsstrahlung constitutes conversion of EKin into hν, brought about by the
deceleration of an electron upon close approach to the (potential energy
barrier of the) nucleus. For an X–ray generator with EKin (electron) = eV, the
shortest λ observable corresponds to a deceleration to v=0, or to the total
conversion of eV into hν, thus λSWL = hc/eV.

(c) �SWL �
hc
eV

� 1.2 x 10�6

V
(m) � 1.2 x 104

V
(Å) � 0.3 x 10�10 m

2. In a BCC structure the smallest θ observable corresponds to the family of {110}
planes. Given a = 10 x 10–10 m, we find d(110) to be:

d110 �
a
2�
� 7.07 x 10�10 m

continued.
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2. Continued.

Looking at a diffraction experiment we realize that θ(110) will increase with
increasing λ and can assume a maximum value of 90o for which sinθ = 1. For this
maximum diffraction condition, the Bragg relation is reduced to:

� � 2d(110) � 2 x 7.07 x 10�10 m � 14.14 x 10�10 m

This finding means that any λ > 14.14 x 10–10 m will not be able to lead to (110)
diffraction. 

3. To determine the lattice constant “a” for the metal requires identification of the
Miller indices corresponding to the given diffraction angles – θ – which in turn first
requires identification of the particular cubic system involved. To accomplish this
identification, let us consider:

(a) Selection rules: S.C. All planes diffract
B.C.C. Planes with (h+k+l) = even number diffract
F.C.C. Planes with only even or only odd (h,k,l) 
indices diffract

(b) The modified Bragg equation:
�2

4a2
� sin2�

(h2� k2� l2)
� const.

Taking (a) and (b), we find:

SC
sin2�1

1
�

sin2�2
2

�
sin2�3

3
�

sin2�7
8

� const.

BCC
sin2�1

2
�

sin2�2
4

�
sin2�3

6
�

sin2�7
14

� const.

FCC
sin2�1

3
�

sin2�2
4

�
sin2�3

8
� const.

(continued)
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3. Continued.

(a) The problem can now be reduced to finding the constant ratio, which
requires finding the sin2θ values.

A quick look at the data suggests a BCC
system since sin2θ7 is about 7 x sin2θ1.

We find:
sin2 �7

14
� 0.059

and
sin2 �1

2
� 0.059

A reminder: For the system to be SC (simple cubic):

sin2 �1
1

�
sin2 �7

8
(0.118 � 0.103)

For BCC the smallest θ value corresponds to the {110} family. Therefore:

λ = 2d sin θ

d(110) �
�

2 sin �1
� 1.541 x 10�10

2 x 0.344
� 2.24 x 10�10 m

We also have:   d(hkl) �
a

h2 � k2 � l2�
and a � d x 2�

a = 3.17 x 10–10 m

(b) For a BCC system we find that atoms are in contact along the body diagonal:

a 3� � 4r and r �
a 3�

4
� 1.37 x 10�10 m

sin2θ
(1) 0.118    
(2) 0.238
(3) 0.355
(4) 0.474
(5) 0.590
(6) 0.710
(7) 0.828
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4. Cr:  BCC; r = 1.30 x 10–10 m

In BCC systems the relationship between r and a is given by:

a 3� � 4r and a � 4r
3�
� 4 x 1.30 x 10�10

3�
� 3.00 x 10�10 m

The first diffraction peak for BCC corresponds to {110} planes; thus:

sin �1 �
�

2d
(d110 �

a
2�

)

λ = 2d sinθ

� �

2a
2�

�
� 2�

2a
� 0.3634

θ1 = 21.3o

Pd:  FCC; r = 1.37 x 10–10 m

a 2� � 4r ; a � 2 2� r � 3.87 x 10�10 m

According to the selection rules, the first diffraction peak corresponds to the family
of {111} planes:

sin �1 �
�

2d
� 0.345

θ1 = 20.2o

d(111) �
a
3�
� 2.23 x 10�10 m

5. (a) While the diffraction angle for the (112) planes of Au can readily be
calculated, this calculation serves no purpose since the selection rules
prohibit diffraction at this set of planes!  (FCC!)
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5.    Continued.

(b) Diffraction on {220} planes is encountered.
For FCC we have:

a 2� � 4r and a � 4r
2�
� 2 2� r � 4.13 x 10�10 m

and d(200) �
a
8�
� 1.46 x 10�10 m

λ = 2d sin θ

sinθ = λ/(2d) = 0.342

θ = 20o

6. (a) The maximum energy (eV) of the electrons corresponds to the generation of
λSWL as bremsstrahlung. Thus:

�SWL �
hc
eV

� 1.24 x 10�6

V
(m) � 1.82 x 10�10 m

Since λKα is smaller than λSWL, it is clear that the energy of the incident
electrons is insufficient to remove an electron from the K shell of Cu and thus
no Kα radiation can be generated.

(b) This question was answered in (a): λSWL = 1.82 x 10–10 m

(c) The answer to this question is no!  This answer can be explained on the
basis of an energy diagram.

energy required to remove an electron
from the K shell! It can be seen that this
energy (required to generate Kβ
radiation through the removal of an
electron from the K shell) is significantly
more than that associated with CuKβ
radiation.

7. The system can only be BCC since sin2θ7 is 7 x sin2θ1; in SC systems the value of
sin2θ after 0.600 would be 0.800!

K

L
M

–E

0 n = ∞

CuKβ

↓



LN–5

8. The shortest wavelength emanated by a tube is given by:

λSWL = hc/eV  (Bremsstrahlung)

a = 3.26 x 10–10 m

BCC structure; first diffraction occurs on {110} planes:

d(110) �
a

h2 � k2 � l2�
� 3.26

2�
� 2.31Å

λ = 2d sinθ

sinθ is always ≤ 1, so λ ≤ 2d ≤  4.62 x 10–10 m

λSWL = 4.62 x 10–10 = hc/eV

V � 6.63 x 10�34 x 3 x 108

1.6 x 10�19 x 4.62 x 10�10

E � e �V, so V � 4.25 x 10�16 J
1.6 x 10�19 eV�J

� 2690 Volt

9. (a) SC: θ{100}

(b) BCC: θ{110}

(c) FCC: θ{111}

10. We determine the crystal system and from the constant ratio [(sin2θ)/(h2+k2+l2) =
λ2/4a2] we obtain “a” since λ is given. We look at θ1, θ2 (better sin2θ) and, if
necessary, at θ7.

θ          sinθ       sin2θ        

(1) 13.70 0.2368 0.56092
(2) 15.89 0.2738 0.74962
(7) 36.62
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10. Continued.

The sin2θ values do not suggest BCC or SC structure, so that leaves FCC. We
need only the first two ratios, but, for the exercise, let us identify all 9 diffraction
lines!

    θB     sinθB  sin2θB/(h2+k2+l2)   ratio    

(1) 13.70 0.2368     0.05609/3 0.0187 (111)

(2) 15.89 0.2738     0.07496/4 0.0187 (200)

(3) 22.75 0.3867     0.1496/8 0.0187 (220)

(4) 26.91 0.4526     0.2048/11 0.0186 (311)

(5) 28.25 0.4733     0.2240/12 0.0187 (222)

(6) 33.15 0.5468     0.2990/16 0.0187 (400)

(7) 36.62 0.5965     0.3558/19 0.0187 (331)

(8) 37.60 0.6101     0.3723/20 0.0186 (420)

(9) 41.95 0.6685     0.4469/24 0.0186 (422)

�2

4a2
� 0.0187 a �

(1.54)2

4 x 0.0187
� � 5.63Å � 5.63 x 10�10 m

A brief check:

λ = 2d(111) sin 13.70

� � 2 a
3�

sin 13.70

a � 1.54 x 3�

2 x 0.2368
� 5.63Å
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11. First we determine λKα(Cu). We also know that Ag crystallizes in an FCC lattice;
thus the three smallest θB values are generated by the (111), (200), and (220)
planes.

Using the Bragg relation, λ = 2d(h,k,l) sinθB, we recognize that we have two
unknowns: d(“a”) and θB (to be determined).

λ = 2d(111) sinθ1 d(111) �
a
3�

a � 4 x 10.3 x 10�6

6.02 x 1023
3� � 4.09Å

d(111) = 2.36 x 10–10 m

10.3 x 10–6 = (NA/4)a3

�1 � sin�1 1.54 x 10�10

2 x 2.36 x 10�10
� 19.04o

�2 � sin�1 1.54 x 10�10

2 x 2.045 x 10�10
� 22.1o [d(200) � a� 4� � 2.045Å]

�3 � sin�1 1.54 x 10�10

2 x 1.446 x 10�10
� 32.2o [d(220) � a� 8� � 1.446Å]

12. In any X–ray tube, the shortest wavelength of X–rays generated (regardless of the
target material) will be: λSWL = hc/eV. Moreover, the “longest” wavelength still
generating diffraction will do so with a θB → 90o. Therefore, the limiting
wavelength criterion is given by:

λlongest = 2d sin 90 = 2d

(continued)
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12. Continued.

Potassium (K) has BCC structure; thus the smallest θ is associated with {110}
diffraction (= the largest interplanar spacing):

�SWL � 2d(110) � 2 a
2�
� hc

eV

V � hc
e x 2 a

2�
a � 2 x 45.46 x 10�6

6.02 x 1023
3� � 5.32Å

V � 6.63 x 10�34 x 3 x 108

1.6 x 10�19 2 x 5.32 x 10�10

2�

� 1.65 x 103 Volt

13. We first determine the lattice constant (a) for Au, and then the wavelength (λp)
available for diffraction which, in conjunction with the Bragg relationship, will yield
the diffraction angle for (220) planes:

Au:   FCC; mol. vol. = 10.2 cm3

a � 4 x 10.2 x 10�6

6.02 x 1023
3� � 4.08 x 10�10 m

Electrons accelerated by 45 kV will have a kinetic energy of:

EKin = 4.5 x 104 x 1.6 x 10–19 J = (mv2)/2

For convenience, let us determine v, the velocity of the electrons, and insert the
value into the deBroglie equation:

v � 9 x 104 x 1.6 x 10�19

9.1 x 10�31
� � 1.26 x 108 m�s

(we ignore relativistic effects)

�p �
h

mv � 6.63 x 10�34

9.1 x 10�31 x 1.26 x 108

λp = 5.8 x 10–12 m            (a short λ, θB will certainly be small)
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13. Continued.

�p � 2d(hkl) sin � � 2 a
8�

sin � � a
2�

sin �

�B � sin�1 �p
a
2�
� sin�1 5.8 x 10�12 x 2�

4.08 x 10�10

θB = 1.15o

14. From the selection rules we recognize that the first diffraction peak in BCC
systems is due to (110) planes.

For vanadium,  νKα = 3/4 R(23–1)2 = 3.98 x 109 m–1

and λKα = 2.51 x 10–10 m

λ = 2d sinθ

d(110) �
2.51 x 10�10

2 sin 41.75
� 1.885 x 10�10 m

dhkl �
a

h2 � k2 � l2�

a � d(110) x 2�

a = 2.66 x 10–10 m

15. First order diffraction refers to “n” in the Bragg equation being one.

ν Ag Kα = 3/4 R(46)2 = 1.74 x 1010 m–1

λ Ag Kα = 0.574 x 10–10 m

Fe = BCC structure

sin � � �

2d(110)

λ = 2d(110) sin θ

� � sin�1 �

2d(110)
� 8.15o
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16. Ta:   BCC structure; the smallest θ is due to (110) reflections.

λ = 2d(110) sinθ

To determine λ, we must know d(110) – that means “a”, the lattice constant.

For Ta:  

1.09 x 10–5 (m3/mole) = (NA/2)a3

a � 2 x 1.09 x 10�5

6.02 x 1023
3� � 3.31 x 10�10 m

d(110) �
a
2�
� 2.34 x 10�10 m

λ = 2 x 2.34 x 10–10 x sin 29.35

λ = 2.29 x 10–10 m  ;  ν = 4.36 x 109 m–1

Taking the Moseley relationship, we have:

4.36 x 109 = 3/4 R (Z–1)2

(Z� 1)� 4 x 4.36 x 109

3R
� � 23

Z = 24

The unknown target material is chromium (Cr) .

17. (a) First, realize that the two lines nearest the undiffracted beam will be due to
the same diffraction cone (use the 3.091 diffraction software if you need to
convince yourself of this). This cone will be due to {111} planes , which
have the widest spacing in the FCC structure, and thus have the smallest
diffraction angle, 2θ.

(continued)
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17. Continued.

(b) The radius of the camera is 5 cm, so a separation of 7.8 cm between lines is
an angle of 7.8/5 radians = 1.56 radians = 89°. This separation represents
twice the diffraction angle, so 2θ = 44.5°, and θ111 = 22.25°.

d111 �
�CuK�

2 sin�111
� 1.54Å

2sin 22.25
� 2.034Å

a � d111 3� � 3.52Å

For the FCC structure: a 2� � 4r , so r � a 2�

4
� 1.24Å

18. We first determine λp for the electrons through the deBroglie relationship,
λp = h/(mv). This requires knowledge of v:

Eel = e x V = (mv2)/2 v � 2e x V
m

�

Thus: �p �
h

m 2e x V
m

�
� h

2e x V x m�

λp = 3.9 x 10–12 m

λ = 2d(hkl) sinθ; to determine θ we must know d(112), given by a� 6� . We must first
determine the lattice constant (a) for gold (Au). From the P/T we get:
molar volume = 10.2 x 10–6 m3; accordingly (Au = FCC):

10.2 x 10�6 � 6.02 x 1023

4
x a3

a � 40.8 x 10�6

6.02 x 1023
3� � 4.08 x 10�10 m

We now find that:

d(112) �
4.08 x 10�10

6�
� 1.66 x 10�10 m

sin � � �

2d(hkl)
� 3.9 x 10�12

2 x 1.66 x 10�10
� 1.17 x 10�2

� � sin�1 1.17 x 10�2 � 0.67o

After you have determined θ, think for a moment! OK!? Selection rules tell you that
diffraction on {112} planes are destructively interfered with! No diffraction on {112}!
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19. We first determine the crystal system, then (knowing λ) we determine a and obtain
the asked for molar volume.

     2θ          θ          sinθ       sin2θ  

(a) 40.50o 20.25 0.3461 0.1198
(b) 58.60o 29.30 0.4894 0.2395
(c) 132.60o 66.30 0.9156 0.8384

We recognize 0.8384 = 7 x 0.1198; this means (sin2θ7)/14 = (sin2θ1)/2 = const.
The system is BCC.

� � 2d(110) sin �1 � 2 a
2�

sin �

a �
2� x 1.541 x 10�10

2 x 0.3461
� 3.15 x 10�10 m

Molar volume = NA/2(a3 = 9.4 x 10–6 m3/mole = 9.4 cm3/mole

20. From information in the P/T we know the molar volume of Ag at 300K. This allows
us to determine θ(111) through the lattice constant. With the given ∆θ we can obtain
θ(111) at 1073K (which is 800oC).

At 300K: Molar Volume = 10.3 x 10–6 = NA/4(a3)

a � 4 x 10.3 x 10�6

6.02 x 1023
3� � 4.09 x 10�10 m

d(111) �
4.09 x 10�10

3�
� 2.361 x 10�10

λ= 2d(111) sinθ

�(111) � sin�1 �

2d(111)
� sin�1 0.709 x 10�10

2 x 2.361 x 10�10
� 8.64o

At 800oC (1073K):  θ(111) = 8.64 – 0.11 = 8.53o

(continued next page)
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20. Continued:

Correspondingly:

d(111) �
�

2 sin 8.53
� 2.34 x 10�10 m � a

3�

a � 3� x 2.39 x 10�10 m � 4.14 x 10�10

Molar Volume = NA/4 x a3 = 10.7 x 10–6 m3/mole

=   10.7 cm3/mole

21. We recognize that the existence of (100) diffraction indicates a simple cubic
system. After determining the lattice constant, we can obtain the central void
dimension and answer the question.

Required: (100) diffraction = SC
SC structure: d(100) = a

λ = 2d sinθ = 2a sin θ

a = λ/(2sinθ)

(The way the question is phrased, it may not appear clear if 14.88o is θ. The
diffraction expert would take 14.88o = 2θ, but you may have a different idea. Both
assumptions are taken as correct.) Accordingly:

(a) 14.88o � �1 ; a � �

2 sin 14.88
� 1.541

2 x 0.257
� 3.0Å

(b) 14.88o � 2�1 ; a � �

2 sin 7.44
� 1.541

2 x 0.129
� 5.95Å

In the SC system we have a central void; an atom in this location is bounded
along the body diagonal by all eight atoms:

(continued next page)
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21. Continued.

2r = a

a 3� � 2r � 2R � a � 2R

2R � a 3� � a � a( 3� � 1)

R � a
( 3� � 1)

2
� 0.366 a

For (a): R = 0.366 x 3.0 = 1.1Å

For (b): R = 0.366 x 5.95 = 2.18Å

Since the maximum radius for interstitial atoms is 1.1 and 2.18 Å for (a) and (b)
respectively, an atom with r = 1.08Å can be accommodated  without lattice
distortion in either crystal lattice.

22. In a BCC system, the first diffraction (smallest θ) occurs on {110} planes (see
selection rules, LN5–11). Given the lattice constant (a = 5.5Å), we find the d(110)
spacing at 

d(110) �
5.5

2�
� 3.89Å

In order to obtain {110} diffraction (maximum θ = 90o and sinθ = 1), λ ≤ 2d must be
satisfied.

Since no target material for the tube is indicated, we take the smallest λ available
from the X–ray generator, λSWL:

�SWL �
hc
eV

� 10.3Å

2d = 3.89 x 2 = 7.78 Å

We find 10.3 > 7.78 and therefore no diffraction cone can be generated by this
particular powder with the available X–rays.

R = maximum radius for
interstitial atoms
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23. Grind the material to powder and do a Debye–Scherrer diffraction with CuKα
radiation (λ listed or calculated). If the film shows diffraction lines, the material is
crystalline [the answer to (a)]. If the sin2θ values for the first and seventh lines
yield a constant ratio for:

sin2 �1
2

�
sin2 �7

14
� const

we are dealing with a BCC structure [answer to (b)]. We obtain the lattice constant
through the Bragg equation:

λ = 2d(110) sinθ1 [ d(110) �
a
2�

]

� � 2a
2�

sin�1

a � � 2�

2sin�1

24. To solve the problem we first determine the longest wavelength still capable of
causing diffraction. From the Bragg relation: λ = 2d(hkl) sinθ. To get diffraction, θ
may assume a maximum value of 90o (sin 90o = 1). Accordingly:  

λmax = 2d(hkl).

In FCC systems the largest diffraction d is d(111):

�max � 2d(111) � 2(a� 3� ) � 6.93Å

Using the Moseley relation we know that λCr(Kα) = 2.3Å. Therefore diffraction will
take place if Kα radiation is generated by a 1.5 kV accelerating potential, or if λSWL
is equal or less than 6.93Å!

λSWL = (hc)/eV = (12.4 x 10–6)/V = 8.29 x 10–10 m

We recognize that λSWL > λmax. There cannot be any diffraction given the
X–rays from a tube operated at V = 1.5 x 10 3 Volt .
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25. From Moseley’s law we know that λKα ∝  1/Z2. As a first approximation, by
comparing CuKα and MoKα, we therefore have:

�MoK� � 1.542�29
42
�

2

� 0.735Å

Or, more accurately:

1.542 �29� 1
42� 1

�
2

� 0.719Å

(The listed value for λKα (Mo) = 0.71Å)

Since in replacing a Cu target with a Mo target the resulting λKα is decreased, it
must be expected that the first diffraction peak will shift to a smaller θ!!

26. Vanadium is BCC. The largest diffracting d is d(110). From the Bragg relation,
λ = 2d(hkl) sinθ, we recognize that θ can go up to 90o (sinθ = 1) and the longest
wavelength still giving diffraction is seen to be: 

�max � 2d(110) � 2(a� 2� )

For vanadium:  

Mol.Vol. = NA/2 x a3

a � 2 x 8.78 x 10�6

6.02 x 1023
3� � 3.08 x 10�10 m

�max � 2 a
2�
� 4.35 x 10�10 m
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27. Mo:  Z=42;  Kα → (ni=2; nf=1); σ=1

�K� � R(Z � 1)2�
�
	

1
n2

f

� 1
n2

2
�


�

�K� � 1.097 � 107�1m�(42 � 1)2� 1
12

� 1
22
�

�K� � 1.38 � 1010m�1

�K� � 1
�K�

� 7.25 � 10�11m

28.
1
�K�

� �K� � R(Z� 1)2�
�
	

1
n2

i

� 1
n2

f
�


�

� R(Z� 1)2 � 3
4

(Z� 1) � 4
3 � � � R
� � 22

Z = 23 (Vandium)

29. Ni = FCC; n = 4; AtWt = 58.7; ρ = 8.9 g/cm3

To get the longest wavelength diffracting in Ni – we look for diffracting planes with
maximum spacing ({111}) and we operate at the maximum θ possible (90o)

for nickel:

a(Ni) � 58.7 � 4
8.9 � 6.02 � 1023

3� � 3.52 � 10�8cm � 1m
100cm

� 3.52 � 10�10m

� � 2d(111) sin� � 2 a
3�

sin 90o � 2 a
3�

� � 2 � 3.52 � 10�10

3�
� 4.06 � 10�10m



LN–5

30.

(Z = 42)

Mo target
e–

�SWL � hc
eV

� 1.24 � 10�6

acc.Voltage
[m] � 1.24 � 10�6

5 � 104

�K� � 4
3R(z� 1)2

�

2.48 x 10 –11m

 7.23 x 10–11m

beam

(V)

x–rays

how did I get λKα? �K�
� R(Z� 1)2 3

4
1
�
� � � 4

3R(Z� 1)2

=
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31. Electron diffraction makes use of the deBroglie relationship: �p � h
mv ; we need

d(111) that means we need, a, the lattice constant since: d(111) � a
3�
 ; the energy

of the electron(s) is eV(acc.)=Mv2/2 .

� � 2d(111) sin � � 2a
3�

sin �

�p � 2a
3�

sin 6o
a � 10.2 � 10�6 � 43�

6.02 � 1023
� 4.08 � 10�10m

�p � 2 � 4.08 � 10�10

3�
� sin 6o � 4.92 � 10�11m

Eel � eV � mv2

2

V � mv2

2e
; v � h

m�p

V � m
2e
� h2

m2�2
p
� h2

2em�2
p
� 623.6 Volt

32. Let’s make use of the data in problem (29): a = 3.52x10–10m; smallest
acceleration potential means operating with the shortest λ achievable at a given
acceleration potential:

�SWL � 1.24 � 10�6

Voltage
; the longest λ giving diffraction is at θ=90o on planes with

largest interplanar spacing ({111}). 

�SWL � 2d(111) sin 90 � 2 a
3�
� 4.06 � 10�10m

4.06 � 10�10 � 1.24 � 10�6

V

V � 1.24 � 10�6

4.06 � 10�10
� 3.06 � 103Volt

33. Operate at the unit cell level with the atomic volume:

Atomic Volume = At.wt
�

� N
n a3 ; solve for At.wt.

At.wt =  181.6g

N
n � a � � � 6.02 � 1023

2
� (0.316 � 10�9)3 � 19.3 � 106 g

m3

(the factor of 106 associated with the density term accounts
for the change of units from g/cm3 to g/m3)
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34. A diffraction set-up is asked for with specification of conditions for achievement of
λKα. You have the choice of material to be used as monochrometer; first
determine λKα (for Ni target) then decide on monochrometor material. You could
use Ni, or more conveniently, you just determine the atomic weight for tungsten
(W; the W stands for Wolfram, the official german name) and you have its lattice
constant.

diffraction set up:

X

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

White Ni radiation
θ

(110)

W monochrometer (110)

collimator

�K� (Ni)

Fe (to be analyzed)

NiK
�
�K

�
� 272 � 1.097 � 107 � 3

4
(m�1)

�K�

=  6.0 x 109 (m–1)

=  1.67 x 10–10m

To isolate Kα from White Ni radiation we establish diffraction for

λ = 1.67 x 10–10 m on (110) planes:

�K� � 2d(110) sin � � 2 a
2�

sin �

sin � �
2� �K�

2a
�

2� � 1.67 � 10�10

2 � 3.16 � 10�10
� 0.374

� � sin�1 0.374 � 21.9o
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35. Determine the energy/photon then λ of radiation and use the Mosley relation to
find Z the atomic #.
Ephoton � 7.725 � 108J�6.02 � 1023 � 1.28 � 10�15J�photon

hc� � hc
�

� � hc
1.28 � 10�15

� 1.55 � 10�10m ; � � 6.45 � 109m�1

� � 6.45 � 109 � (Z� 1)2R 3
4

Z � 4 � 6.45 � 109

3 � 1.097 � 107
� � 1 � 28� 1 � 29 (copper)

36. This is a simple application of the Bragg relation: We determine “a” for Fe(BCC)
and λKα ffor Ni and insert:
λKα (Ni) we know from Problem (34); it is 1.67 x 10–10m the lattice constant for

 Fe(BCC):

a � 2 � 7.1 � 10�6

6.02 � 1023
3� � 2.87 � 10�10m

sin � �
2� � �

2 � 2.87 � 10�10
�

2� � 1.67 � 10�10

2 � 2.87 � 10�10
� 0.411

� � sin�1 0.411 � 24.3o

37. The unit cell is defined as a cell bounded by 3 sets of parallel planes which will fill
all space when translated by multiples of the plane spacings. Cells that contain a
total of one lattice point are called primitive cells, others are called “non–primitive”
cells. Each cell is characterized by volume, shape and contents.

38. (a) close packed array of equal sized spheres (FCC)                 12

(b) simple cubic structure (SC)                   6

(c) body centered cubic lattice (BCC)                   8

39. If two or more parallel interacting waves are moving through a medium, the
resultant wave function at any point is the algebraic sum of the wave functions of
the individual waves. As a consequence of this “superposition” principle, the
intensity of 2 waves that are coherent and have the same wavelength
(coincidence of maxima and minima; ∆x=nλ) is increased (constructive
interference); while that of waves, in which the maxima of one coincide with the
minima of the other, is reduced (destructive interference).
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39. Continued.
Diffraction of x–ray is the result of scattering and interference in ordered structures
(crystals). Coherent x–rays, scattered at atomic planes, will exhibit constructive
interference in directions for which the scattered rays, at parallel planes, result in
path differences of one or more λ. Coherent x–rays, scattered at parallel planes,
will experience destructive interference in directions along which the scattered
rays experience a path difference of (n–1/2)λ.

40. High quality Al single crystals will always have dislocations and
“dislocation generators” which under stress generate more and more dislocations.
Under stress, these dislocations move more readily in the slip system from one
side of a crystal to the other; thus leading to slip, plastic deformation, limiting the
tensile strength of aluminum. In fine grained Al you also have dislocations. In fact,
there are many more than in the perfect crystal. When you apply stress, the
dislocations move readily. However, they get arrested at the first grain boundary.
Here stress may still persist and slip will be initiated, again along a slip plane,
which no longer is in the same direction. The arrests of slip and changing slip
directions from grain to grain lead to a significant reduction in the magnitude of
deformation. The strength is increased.




