
3.012 Structure – An Introduction to X-ray Diffraction 
 
This handout summarizes some topics that are important for understanding x-ray diffraction.  The 
following references provide a thorough explanation of x-ray diffraction in materials: 
 
http://capsicum.me.utexas.edu/ChE386K/ 
 
B.J. Cullity  Elements of X-ray Diffraction 
C. Hammond  The Basics of Crystallography and Diffraction 
(QD905.2.H355) 
 
X-ray diffraction is a tool to identify the phases and crystal structure of a material.  To understand 
how this happens, several concepts come together.  Part I of this handout presents reciprocal 
space and how to visualize it.  Part II summarizes Huygens construction, how scattering waves 
interfere, and why they must be detected from particular directions.  Part III talks about the Laue 
conditions and constructive interference of x-rays in a crystal.  Part IV brings together Parts I, II, 
and III to explain how to identify the key element of the crystal structure that leads to 
constructively-interfering x-rays.   
 
PART I: Direct (or real) and reciprocal space 
 
Let's imagine a regular array in space (we’ll call this usual space the “real space”), and for 
simplicity, let's imagine the most simple case of a simple-cubic lattice where we put one atom at 
every lattice point.  We could have put any other motif at every lattice point – it could have been 2 
atoms, 3 atoms, a pair of skis, or just one atom but displaced a bit from the lattice point, but for 
now, we’ll stick with one atom on a lattice point. 
 
Now imagine you have a vector a1 that points from the atom at the origin toward one of its 
nearest neighbors (see figure below).  A property of every vector is that it has both magnitude 
and direction.  The direction of a1 in this particular simple-cubic case is along X and the 
magnitude we'll call a.  We can define other vectors a2 and a3 that lie along Y and Z, respectively, 
and they each have magnitude a.   
 
a1, a2, and a3 are the “basis” for our regular array.  We can define the position of any point in the 
array (i.e. of any atom in the space) by taking integer combinations of a1, a2, and a3.  (Formally a1, 
a2, and a3 are called the principal lattice vectors of the Bravais lattice.) The position of point P that 
has crystallographic coordinates (2,2,1) is R(P) = 2a1 + 2 a2 + 1a3. (Note the difference between 
crystallographic coordinates and Cartesian coordinates – Cartesian coordinates are given with 
respect to the usual three perpendicular axes X, Y, Z, while crystallographic coordinates are 
given with respect to the axes on which a1, a2, and a3 lie and in units of a1, a2, and a3) 
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 Now let's look at the reciprocal lattice. The formal definition is that the reciprocal lattice vector G 
belongs to the reciprocal lattice of a Bravais lattice if the plane wave exp(i G • r) has the same 
amplitude at every point of the direct Bravais lattice of which G is a reciprocal lattice vector. In 
practice, this is how you can think at it:  we define a basis in the reciprocal space in terms of three 
principal lattice vectors b1, b2, and b3 : 
 
b1 = 2π * (a2 x a3) / V, where V = a1 • (a2 x a3) 
b2 = 2π * (a3 x a1) / V 
b3 = 2π * (a1 x a2) / V 
 
Note that the scalar product between ai and bj will be 2π  if i=j, or 0 otherwise. The units of 
reciprocal space are 1/distance  (1/Å, for example).  As any direct Bravais lattice vector can be 
defined by integer combinations of a1, a2, and a3, similarly, any reciprocal lattice vector can be 
defined by integer combinations of b1, b2, and b3.  Combinations of b1, b2, and b3 create a regular 
array of points, and the points form a lattice in reciprocal space.  b1, b2, and b3 are called the 
reciprocal lattice basis vectors. If you change the direct lattice (e.g. making the basis vectors 
longer), the reciprocal lattice vectors will change in an inverse way (e.g. becoming shorter). On 
the other hand, the scalar product between a direct lattice vector that has crystallographic 
coordinates (p,q,r) and a reciprocal lattice vector that has coordinates (s,t,u) will not change (think 
about this, and use the scalar product above). 
  
PART II: Huygen’s construction 
Now let's talk about diffraction.  This topic is nicely covered in the handwritten notes "Description 
and Determination of Atomic Positions in Crystalline Solids."  Please read those notes to fully 
understand the material.  Part II and Part III gives a brief summary.   
 
When x-rays (λ ~1 Å) impinge on a materials, the atoms scatter the x-rays because the distance 
between atoms is about the same size as the x-ray wavelength.  Huygens construction shows 
what happens when a plane wave (an x-ray, for example) hits a regular array of scatterers (a row 
of atoms, for example). In the 'Normal Incidence' figure on page 6 of the notes and in the figure 
below, consider an arc with the smallest radius next to a single scatterer. The arc represents 
where the wave has equal amplitude or is at the same phase.  The next largest arc shows the 
same amplitude when the wave is one wavelength farther away from the scatterer.   
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When viewed from very far away and from a few very specific directions, however, it is possible to 
see x-rays from different scatterers all with the same amplitude; the x-rays are in phase. In fact, if 
you look at the array of scatterers from far away (using your x-ray vision) from a direction 
perpendicular to the scatterers (you're looking at them head-on), the x-rays from all the scatterers 
will have the same amplitude.  This is the zero-order direction.  If you look at the scatterers from a 
direction perpendicular to the 'first-order' tangent, you will see when the scattered waves on that 
tangent are in phase.  The same holds true for 'second-order', 'third-order' and so on. 
 
The purpose of Huygens construction is to show that it is possible to see waves in phase coming 
from different scatteres only when you look at the scatterers from very specific directions.   
It is also important to notice that when viewed at a great distance, the individual waves in phase 
with each other appear like plane waves.  The wavefront becomes flat at large distances.  Notice 
that different combinations of scatterers contribute to each order of in-phase wavefronts. 
 
 
PART III: Laue conditions 
Laue took a step further to quantify what is necessary for constructive interference of x-rays when 
they’re scattered by atoms.  Using the model of a single chain of atoms in 3-D space, the 
difference between the 'extra' distance travelled by one incoming wave and the 'extra' distance 
travelled by the other outgoing wave must be an integer number of wavelengths. See page 9 of 
the notes and the figure below.  This condition must be true if we have a crystal (instead of a row 
of atoms) in all three directions of the direct Bravais lattice, and the conditions give rise to the 
Laue equations: 
 
a • (S-So) = nxλ 
b • (S-So) = nyλ 
c • (S-So) = nzλ 
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S and So are vectors that describe the direction of the waves and they have norm = 1. 
 
So, if we have only a chain of atoms, the diffracted waves off the chain will be seen at several 
angles, and since there is rotational symmetry around the chain, we will see the diffracted beams 
form several different cones – the allowed angles for these cones will correspond to angles for 
which the first Laue condition above holds.  If you now imagine chains of atoms in all three 
dimensions (that’s what a crystal is) with x-rays scattering off each chain, you can imagine cones 
originating from chains along each of the three crystallographic directions. Sadly, most of these 
cones will interfere with each other, and only if you look at the intersection (if there is one) 
between one of the cones in one direction, one of the cones in the second direction, and one of 
the cones in the third directions, you’ll see some light (i.e. a plane-wave beam, in phase).  
 
To make clear what is happening, let's define some distances.  If you imagine one atom at the 
origin, the distance between the origin and the next atom in one chain is 'a', the distance between 
the origin and the next atom in another chain is 'b', and the distance between the origin and the 
next atom in a third chain is 'c'.  The distances a, b, and c are each important for constructive 
interference along each chain, as we saw previously.  But what about in three dimensions when 
all cones from all the chains are interacting?  What constructive interference must the chains 
have in common to define the intersection of the cones?  One way to look at this is via the Laue 
equations written above – you need to be in a direction S such that the change with respect to S0 
has led to an additional integer number of wavelengths to have been traveled by the ray hitting 
you.

 

An alternative picture was given by Bragg. If you look at the atoms at the endpoints between the 
origin and a, the origin and b, and the origin and c, those three atoms define a plane.  The 
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distance between the atoms in that plane and the atoms in the next nearest parallel plane must 
also contain an integer number of wavelengths for constructive interference to happen. The letter 
d denotes the distance between two parallel planes.  The intersection of the cones represent x-
rays that have direction along the perpendicular distance d between two planes and that have an 
integer number of wavelengths along d. Those vectors are beams of x-rays that can be detected 
in real space when the x-ray diffraction experiment takes place.  Notice that the constructive 
interference depends on the ratio between λ and d. 
 
The explanation of reflecting planes in the description of Bragg’s Law does not provide an 
accurate physical picture of what actually occurs in x-ray diffraction.  The resulting Bragg 
equation    

nλ = 2dsinθ 
is, however, a useful tool for calculating the distances between planes (d) that give rise to 
diffraction given an angle of incidence (or measurement) and an incoming x-ray wavelength. 
 
 
PART IV: Ewald construction 
In Part I of this handout, we talked about defining reciprocal space vectors from a real space 
lattice.  Now let's say that those vectors in reciprocal space vectors are actually vectors defining 
the propagation directions of x-rays that are scattering off the atoms.  From Part III we showed 
that the x-rays that constructively interfere in three dimensions will depend on the wavelength and 
the distance d between planes.  
 
Now, if an experiment to determine a crystal structure uses a monochromatic x-ray source, all the 
x-rays will have one wavelength λ .  Ewald's construction gives a geometrical interpretation of the 
Laue conditions in 3D.  Define the incoming and scattered x-rays on to a crystal with vectors of 
length 2π/λ and with directions So and S.  Just as the Laue condition states, constructive 
interference occurs when the difference between the incoming and diffracted vectors gives a 
vector that is an integer number of wavelengths.  The resulting vector that is the difference 
between the incoming and diffracted vectors is called d*.  It's length is 2π/λ (So and S are versors, 
i.e. they have norm=1). 
 

 

Now consider if we plot this vector d* in reciprocal space such that d* goes from the origin O to 
the point P (see graph above), We have also drawn the Ewald sphere, of radius 2π/λ, such that it 
goes through O.  Now, Laue conditions ask that the vector d* has integer crystallographic 
coordinates in reciprocal space. You can see that this is in general very unlikely, but it will happen 
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if we start changing continuously λ (as in the picture below), or if we rotate the crystal, for a fixed 
λ. 

 
 

 
                                    
When carrying out an XRD experiment, you may use a "white" spectrum of radiation (that is, you 
use many wavelengths of radiation).  With many wavelengths, spheres of many radii are plotted 
on the reciprocal lattice and any reciprocal lattice point that crosses the spheres will 
constructively interfere. 
 
The other possibility is to use monochromatic wavelengths but with a powder of crystals, so that 
the reciprocal spaces of all the crystallites are oriented in all possible positions. This is the Debye 
Scherrer experiment that shows how measuring the angles of the resulting x-ray beams tells us 
what peaks are diffracting in a material for a given wavelength. 
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