3.012 Bonding-Structure: Questions/Answers

1 Quantum States and Wavefunctions

1.1

Dealing with Wavefunctions

e How eigenfunctions are used in the Schridinger equation (SE)?

1.2

In quantum mechanics, the state of a particle is described by a wavefunction. The
time-dependent Schrodinger equation (TDSE) is used to determine the time-evolution
of the wavefunction. When the potential V' does not depend on time, we use the
stationary Schrédinger equation (SSE) to calculate the eigenfunctions (=eigenstates)
and the eigenenergies of a particle in the presence of the potential V. From these
eigenergies and eigenfunctions, we can determine emission/adsorption energies, obtain
the probability of finding the particle in a given spatial region, calculate expectations
values, among others.

What are some ways in which we can apply the wavefunction to obtain probabilities?

In 1D, the probability of finding an electron (wavefunction=1(z)) in the spatial in-
terval Tpin < # < Tmes i given by the integral [ ¢*(z)y(z)dz (¢p must be
normalized).

In 3D, the probability of finding an electron (wavefunction=1(7)) in the spatial
region (2 is given by [, ¥*(7)y(7)d7

Quantization of the Energy
What exactly is the Farbe (color) Defect?

In Lecture 2, it was shown that a negative ion vacancy in ionic crystals can be as-
similated to a 3-dimensional box able to trap an electron. The energies of the bound
electron are quantized; the resulting adsorption/emission spectrum is discrete. Due
to this color selectivity, the ion vacancy appears colored (hence the naming).



1.3 Quantum Interference

o How does quantum interference work?

Due to the wave-like behavior of quantum particles, it is possible to create construc-
tive/destructive interference between quantum states by linear superposition of wave-
functions (refer, for example, to Lecture 1 — electron diffraction/double-slit experi-
ment).

2 Schrodinger Equation, Separation of Variables

2.1 Dealing with the Schrodinger Equation

2.2

o Will we be needing to calculate with imaginary numbers in the wave equations?

Yes, it can happen. The imaginary part of a wavefunction is as important as it real
part.

Which aspects of the SE do I need to know?

I am confused at the extent to which we need to know how to solve the SE.

Among others, you need to be able to:

- distinguish clearly between the TSDE and the SSE,

- use the method of separation of variables,

- solve the free particle, the particule in an infinite multi-dimensional box completely,

- describe qualitatively the eigenfunctions (oscillation/exponential decay) and eigen-
values (discrete/continuous spectrum) for a particle in a step potential and a particle
in a finite box,

- explain how to solve the hydrogen-like atom and describe the eigenstates and eigenen-
ergies,

- discuss multi-electron atoms.

How do I know when to use the different versions of the SE?

We use the TDSE when the potential is time-dependent. The SSE is used otherwise.
For the problems seen in class, the potential was always independent on time: V =

V(7).
Separation of Variables

Why can separation of variables be used in the 8 following situations: time-independent
potential, particle in a multi-dimensional box, particle in a central potential?



For the time-independent potential, the wavefunction ¥(7,t) can be separated as
U(7,t) = 9(7)f(t) because the potential does not depend on #; this expression is
then injected in the TDSE. Similarly, to solve the SSE associated to a central potential,
the wavefunction v(7) is separated as ¥(7) = R(r)Y (0, ) because V (r) does not
depend on 8 and ¢.

For a particle in a multi-dimensional box, separation of variables works because the

3 spatial directions z, y and z are “equivalent” and “independent” .

o It would be nice to have a bit more of the math on separation of variables.
(1) time-independent potential
After substituting U(7,¢) = 4(7)f(t) in the TDSE, one obtains:
EFOV(P) + V(P[R9 (P) = ifp(P) 5 £ (1)-
D1v1d1ng by (7)) f(t):
S (B VR (P) + V(YT ) = it 1 (0).

A t-dependent function cannot equal a 7-dependent function unless these functions
are equal to the same constant E. Thus:

s (V) V(PP ) = B and ih gty 51(2) =

The first equation gives the SSE from which zp(?) can be determined. From the
second equation (ih% f(t) = Ef(t)) the time-depedent part f(t) can be calculated
(f(t) o e /)

(2) multi-dimensional box

The SSE for a multi-dimensional box is

—%V%ﬁ(xayaz) = E¢(IE,y,Z)
With the ansatz ¥(x, y, z) = X(z2)Y (y)Z(z), we obtain:

EAV2LX + X285 + XY L4} = EX(2)Y (y)2(2).

D1V1d1ng by X(z)Y (y ) (z), we obtain:
h2 1 d?’X 2y 2z _
At T v A =P
!The true mathematical reason is that the potential V (z,y,2) = 0 inside the I?OX can be written
+00 outside

0 if0<z<a

as the sum of three potentials V;(z) + Vy(y) + V2 (2) where: V(z) = { oo fz<Oora<s Vy(y) =

0 ifo<y<d Vi(2) = 0 if0<z<ec
+oo ify<Oorb<y’ 7 ] 400 fz<0orc<z '



A sum of functions of independent variables can not be equal to a constant unless the
functions are constant. Thus:

B eX g, B LY g oand B L L4 _ B (with E = E, + B, + E,).

2m X(7) da? ' m V() dy® M Z(2) &
Consequently, we obtain three independent SSE. The total energy E is the sum of the
corresponding eigenenergies E,, E, and E,.

(3) central potential

The separation of variables for the case of a central potential is shown in 5.2.

When you use separation of variables in the TDSE, does the f(t) just go away?

As seen above, f(t) is the solution of ih%f(t) = Ef(t). It is thus proportional to
e Ft/h - f(t) is important to relate 1 (7) (solution of the SSE) to U(7,t) (solution
of the TDSE): U(7,t) = f(t)(T) = Ae "F¥/M)(7) (A constant).

3 Operators, Expectation Values

3.1

3.2

Dealing with Operators

e How many specific oprerators do we need to know?

You need to know the position operator 7= 7, the momentum operator ? = —ihﬁ,
and all the operators which are constructed from them (kinetic energy operator, po-
tential energy operator, Hamiltonian, angular momentum operator, square of the
angular momentum operator...). You also need to become very comfortable with the
correspondence principle.

How does the potential relate to the energy?

The total energy is the sum of two parts (kinetic + potential). The operator associ-
ated with the total energy is the Hamiltonian H = —%VQ + V(7). The operator

associated with the potential energy is V/(%) = V(7). In one of the problem set, we
have seen that the potential energy for an electron in an hydrogen atom is twice the

total energy, but this is a very particular case.

Hamiltonian, Total Energy

For the hydrogen atom, we wrote that the Hamiltonian is equal to 8 different things.
How come?
We indeed wrote:

T _ _hlyg2_ _e
H = 2mv dmegr

2




3.3

3.4

o 218,29 1 9 i) 1 92 e2

=-L{4EE + pdkm &) F + mg 7 (@) 2} - i
_ 19,298 L?

H= -5z o+ gme + V(1)

The three expressions are the same because (refer to Lecture 5).

Angular Momentum

What exactly are L, L? and H for?
How are they used in problems?
What is the application of L,, L? and H, and their meaning?

L,, L? and H are symbols which represent long expressions which include a lot of
derivatives (they are called differential operators). In spherical coordinates,

__nf120 1
H= _% {1‘2 3TT 87" + r2s1n( ) 90 Sm(e)ag + m&zﬂ} +V(r,0,¢)
T2 J— 1 9 1 32
L7 = sin(9) 90 Sln(e) 96 ~ RZsin®(6) 042

Using these operators long equations can be rewritten conveniently (e.g. the SSE can
be written in the compact form Hi = E1))

L, is the operator associated to the projection of the angular momentum on the z-
axis. L2 is the operator associated with the square modulus of the angular momentum.
The angular momentum is important for problem with spherical symmetry. L,, L? are
useful to solve SSE’s in which the potential is central (that is, spherlcally symmetric:
V' does not depend on 6 or ¢). Indeed, when V is central, Lz, L2 commute with the
Hamiltonian H (cf. next part)

Commutation

Why is it significant that I:Z, I? and H commute?

What does it mean if operators have a common set of eigenvalues?
1 still do not understand what a set of commuting operators is.
The fundamental property of commuting operators is the following;:

“Commuting Hermitian operators have a common set of EEGENFUNCTIONS” (Lec-
ture 5)

(the corresponding eigenvalues are in general not the same)
This property is useful to solve difficult eigenvalue problems.

In the particular case of the Hydrogen atom:



i) It can be verified that f/Q, L, and H commute between one another 2.

ii) Simultaneous eigenvalues of L? and L, have the general form R(r)Y}m (6, ) (where
R(r) can be any function and Y}, (0, ¢) are spherical harmonics).

From the preceding, it was inferred in Lecture 5 that the eigenfunctions of H have
the general form ¢ (r, 0, ¢) = R(r)Y;, (6, ¢).

4 Normality, Orthogonality

o Why do we normalize wavefunctions?

As seen above (1.1), the wavefunction can be use to calculate the probability of
finding the particle in a spatial region. The meaning of the normality condition:
Jspace *(7)¢(7)d7 = 1 is that the sum of all the probabilities must be equal to one
(refer to recitation 1 problem IIT (a)).

o Why would a wavefunction not be normalized?
If two wavefunctions 1, and 1, are eigenfunctions of the same Hermitian opera-
tors, there are always orthogonal (that is, [, _4%(7)ys(7)d7 = 0). But, un-

space
less otherwise specified, nothing guarantees that the wavefunctions are normalized

(Jspace P (7)o (7)d 7 and Jspace 5 (P)yp(7)d 7T are in general different from 1).

5 Hydrogen Atom, Orbitals

5.1 Spherical Harmonics, Radial Functions

o [ am still not great about spherical harmonics
I don’t understand what Yy, and R, are.
How do we obtain quantum numbers from L, and L??
Spherical Harmonics come from solving simultaneously the eigenvalue equations
f/2¢ = constant x 1) and f/zz/l = another constant x 1)
(this is possible because [L?, L,] = 0 commute).

The general solutions of this double eigenvalue problem is R(r)Yj, (0, $). Since H
also commute with L, and L? (provided that we deal with a central potential), the
eigenfunctions of H (that is, the soltutions of the SSE) have the same form.

2To show that the commutators [H,L?], [H,L.] and [L?, L.] are zero, the following relations may be

2mr a6 h? sin’
8, ¢-dependence of H is in L?, and all the ¢-dependence of L? is in L,).

~ 2 i2 S . T .
useful: H = — 25 2r? & + 515 + V(r), L? = gy & sin(6) 55 — oy L7 (which mean that all the



Making this ansatz in the SSE, we obtain an eigenvalue equation for R(r).

This equation is then solved to determine R(r) and the corresponding eigenenergies
(Lecture 5 and Engel, Reid: 20.2 - note that Y (6, ¢) = ©(6)2(¢)).

o What is the significance of spherical harmonics? How do we calculate them?
Where do the L2Y;, = B2l +1)Yy, and L,Y,,, = mhY},, come from?
How does the (I + 1) arise?

In high school, the exponentials exp(az) is often introduced as the solution of the
differential equation df (z)/dz = af(z) (note that this is an eigenvalue problem). Sim-
ilarly, the spherical harmonics Y}, (6, ¢) can be introduced as the simultaneous solu-
tions of the eigenvalue problems L?Y = constantxY and L,Y = another constantxY.
This eigenvalue problem can be solved by making the ansatz: Y (6, ¢) = P(cos(0))®(¢)
(where P is an unknown polynomial and « is an unknown function) 3

5.2 Separation of Variables

e Separation of variables for the hydrogen atom?

Since the potential is central (V = V(r) = —e?/(47neor)), one can try to separate
variables in the SSE: v(r,0,¢) = R(r)Y (0, ¢).

The commutation between H, L? and L, tell us that ¢ (r, 0, ¢) = R(r)Y}m (6, ¢), where
Yim (0, ¢) is a spherical harmonic.

Substituting in the SSE H4(r,0,¢) = Ep(r,0, ) (recall that H = _n_z%z%rz% +
€

2m
%g - %) we obtain the equation —%;128%7‘21%(7“) + %SI—)R(T‘) — 47“207]%(7“) =
ER(r) (the first term corresponds to the radial kinetic energy, the second to the
angular kinetic energy/centripetal contribution to the energy, and the third to the
potential/Coulomb energy). This equation can be solved by making another ansatz:
R(r) = L(r)e®” (where L(r) and unknown polynomial and o an unknown constant).

Refer to Engel, Reid: 20.3.

5.3 Orbitals

o What exactly does the orbital drawing mean? Do the 3D pictures indicate the proba-
bility of the electron being at a certain angle 0, $? What do they say about the distance
from the nucleus?

3The origin of the I(I+ 1) is more mysterious. In differential analysis, spherical harmonics are introduced
as the solutions of V2r'Y (6, ¢) = 0 (this definition is perhaps more “natural”). You can check for yourself
that this is strictly equivalent to L?Y = h2I(I 4+ 1)Y. This may help to rationalize the I(I + 1).



Yes, the spherical harmonic drawings (Engel, Reid Figure 18.7) indicate the probabil-
ity of the electron being at a certain angle 6, ¢.

These graphs do not say anything for the electron distance from the nucleus. This
distance is related to the radial functions (Engel, Reid Figure 20.6).

To collect information about the angular probability and the radial probability, one
can draw a contour plot of the orbitals (Engel, Reid Figure 20.7)

6 Dirac Notations, Integration

o What is the Dirac notation?
You need to know:
Alp) = Ay
(A= Ay”
(WalAltpy) = [pace Va(PHAY(PNAT = [0 {A%a(T)} (7)) T (A is supposed
to be Hermitian)
o [ am still having problem with integrating a particle in a boz.

For a particle in an infinite box, since the particle is confined within the box, the
integrations must be done over the spatial region 0 < r < a,0<y<band 0< z<c
(a, b and ¢ are the dimensions of the box).

For the finite box, you need to integrate over all space because the particle can go
outside the box (quantum tunnelling, exponential tail).



