3.012 Bonding-Structure: Recitation 1 (Solutions)

Erratum
e Usually 1(7) denotes the solution of the S.S.E, and ¥(7,t) that of the T.D.S.E.
Thus, equation (2) should be corrected:
h2
@)+ VEWEP) = BH(P) (1)

Same correction for (ab):

U(x,t) = Aeilkz—wt) 4 Beil-kz—wl) j5 a solution of the time-dependent Schrodinger
2

equation (T.D.S.E.) on the conditions that £ = Aiw and FE = @k)”

2m

Thank you for pointing that out.

1 Wave-Particle Duality

Recall
e mass of an hydrogen atom = m(H) = mass proton = 1.67 x 10727 kg =~ 1 g/mol

Solution I

(i) de Broglie relation: A(photon) x p(photon) = h
(ii) momentum-velocity relation: p(Hs) = m(Hs)v(Hz) = 2m(H )v(Hs)

Consequently, the momenta p(Hs) and p(photon) are equal provided that:

2m(H)v(Hy) = W
h
v(Hy) 2m(H)\(photon)

v(Hy) = 0.708 m/s



2 Solving the Schrodinger Equation

Recall

az+b az+b

o derivative of an exponential: %e =ae

Examples:

d . : d . _
65+ 2i)e"* 2 = (5 4 2i)(31)e* 2 d—z'\/ie?’f”—% — §3V/2e37%
X ZL

d ik -7, tkT d2 ik -1\2 ikT
—e'" = ike ;e = (ik)%e
dx dzx
0 kT —iwt -tk —iwt 0 tkx—iwt -1tk —iwt
—e = —jwe ;. —e = ike
ot or

e in general, only x, y, z and t can vary. k, w, a, A, B, etc are constants.

Remark
It is important that you be able to answer questions (al) to (c4)

Solution II

e Free Electron in 1D: V(z) =0
(al) FALSE
i) S.SE.: —& Ly (z) = By(x)
il) Ldeike = dikeths ; L geike = 4(ik)2eike,
Hence, 1(x) = 4¢**7 satisfies —%di;g () = %1&(:6), which is the S.S.E. with energy

_ n2k2?
E = T

Similarly (replace k with 5k), v(z) = 4e*® satisfies —%% (r) = hzé%“)2¢(x),
2512k

2m
iii) Thus, the two wavefunctions 1(z) = 4€*** and 1(z) = 4e"®** are solutions of the

S.S.E. but with DIFFERENT energies.

which is the stationary Schrodinger equation with energy E =

(a2) TRUE
i) S.S.E.: — 22 L p(z) = Eep(x)

2m dzx?

ii) %4 cos(kz) + 2¢'7 sin(kz) = 4(—k) sin(kz) + 2¢' 7k cos(kx)

2



f—;él cos(kz) + 2€'7 sin(kx) = 4(—k)k cos(kz) + 2e' 1 k(—k) sin(kz)
iii) Hence, 9(z) satisfies — 2; dmﬂ/}( ) =1 k2¢(w).

(a3) FALSE

i) S.SE.: — L L0(2) = Byp(a)

) d(f:2AeZk$ + Be—?zkw — A(’ik)Qeikw 4+ B(_2Z'k.)26—2ikw — _kQ(Aeikw + 4B€—2ikw)

iii) Hence, —%dd—zw(ac) = h;—ff(Aeikw + 4B%¢~%*%) which can not be written as
E(Ae*® 4 B2e=%k%) (because of the factor 4 before B). Consequently, 9 (z) does
not satisfy the S.S.E.

(a4) TRUE

i) SS.E: —£2 L(a) = Bh(a)

ii) ddx_2A sin(kz) + Bcos(kx) = —k2%(A sin(kx) + Bcos(kz)).
ii) Hence, 9(z) satisfies — I dmgw( z) = (m)

(a5) TRUE

i) T.DS.E: — 2 2 W(x,t) = ih 2 U(x,t)

ii) %Aei(kwfwt) + Beil-he—wt) — _[2(Aeilke—wt) 4 Bei(-ka—wt)),

iif) & Aeitke—t) | Beil—ka—wl) = _ji,(Aeithe—wt) | Bei(—ka—wl))

iv) Thus 1 (z) satisfies the T.D.S.E. —h—26—2\If(:1:,t) = ih%‘ll(a:,t) on the condition

2m O0x2
that:
h2
h?k?
h2k2

(note that, similarly to the stationary case, %~ is equal to E the energy of the
particle)

Free Electron in 2D: V(z,y) =0
(b1) TRUE
) SSE.: — 2 (Lrp(x,y) + 2x9(,y) = Ep(,y)



ii) 25 (4 + 20)e 2430 = (44 24)(2i) 2720 3Y) = —44j (s, y)
T (44 20)eT2039) = (4 4 20)(3i)2 ) = —94p(z, )

iif) Thus, — 2 (29(2,9) + 229(2,y) = (9 +4) L9p(z, )

iv) ¥(z,y) satisfies the S.S.E. with energy 13h S=(z,y)

(b2) TRUE

) SSE.: — L (Lrp(x,y) + 2x9(,y) = Ep(,y)
i) Q%Acos(kwx) sin(kyy) = —k39(,y)

25 Acos(kyz) sin(kyy) = —k2(x,y)

iii) Thus, — 22 (Z4h(a,y) + Lrtpla,y) = e y(a,y)
R2(k2+k2)
iv) (z,y) satisfies the S.S.E. with energy —5-——*
+oo ifzx <0
Electron in a 1D Infinite Box (Infinite Square Well): V(x) = 0 if0<z<a
+oo ifa<z

(c1) FALSE
i) SSE.: — L y(z) = By(x)

ii) V(z) is infinite outside the box (that is, when 2 < 0 or z > a). As a consequence,
the electron can not be found in that spatial region: psi(z) =0 when z < 0 or z > a
(recall: the probability of finding the electron at a position zg is related to the square
modulus of psi(zg); see problem IIT).

iii) Thus, we only need to solve the S.S.E. in the spatial interval 0 < z < a with the
constraint that 1(z) = 0 at the boundaries of the box (z = 0 and z = a). We end up
with: s

—;‘—m‘;—z%(m) =E¢(x)for0<z <a

$(0) =0 3)
P(a) =0
%(x):0f0r0<w<a
which is different from %(0) =0
P(a) =0

(c2) FALSE



—sm gz (®) = Ey(z) for 0 <z <a
i) From the preceding the S.S.E. can be rewritten as: $(0) =0
P(a) =0
ii) dd—22i\/_cos(?”r—w) = —(32)%iv/2 cos(32Z)
Thus, _%%( ) = %’;‘n g2 1 (z). The first equation is satisfied.

iii) However, 9(0) = iv/2cos(0) = iv/2 # 0 and (a) = iv/2cos(3nz) = —iv/2 # 0

Thus, the boundary conditions are not satisfied.

(c3) TRUE
B2 (1) = By(a )for0<ac<a
i) S.S.E. and boundary conditions: $(0) =
Pla) =
i) &, Asin(212) = —(M)QAsin(%)
Thus, —%%(m) = 2ma2 ¢( ). The first equation is satisfied.

iii) (0) = Asin(0) = 0 and 9(a) = Asin(nmz) = 0. The boundary conditions are
satisfied.

n2x2

iv) Conclusion: 9 (z) is a solution of the S.S.E. with energy

2ma.2 .

(c4) TRUE

The statement (c4) is equivalent to (c3): the only difference is that the energy
E = (h*n?n?)/(2ma?) has been rewritten as E = (h?n?)/(8ma?)

0 f0<z<aand0<y<b
+o00 elsewhere

Electron in a 2D Infinite Boz: V (z,y) = {

(d1) FALSE

0) This one is a bit challenging!

i) As previously, the S.S.E. can be rewritten as:

{ Qm(gif(:v y) + (6 w(a: y)) = EY(z,y) for 0<z<aand 0 <y <b
1) = 0 at the boundaries of the box

) Asm( 2)sin(T5Y) = Asm(mgry)%gsm(l”) Asin(%){—(l“)Qsin(m—‘”)}

Slmllarly,

25 Asin(H2) sin(54) = Asin(122) 25 sin("52) = Asin(%2){— (%) sin(“54)}

5



iii) As a consequence, ——(g;é’(x y) + (‘9 ¢($ y) = h;’f (% + 72‘—;) P(z,y). The
first equation is satisfied but with a DIFFERENT energy E = hz;:) (é—i + 72—22) #

2 (12 | m?
ey

(note however that the boundary conditions are satisfied)

General Properties of the Schrodinger Equation
(1) FALSE

0) This one is even more challenging!

i) 14(x) is a solution of the S.S.E. with energy E,:
—f dra(®) + V (@)a (@) = Eatha(@)

ii) ¥p(x) is a solution of the S.S.E. with energy Ej:

~ B2 & () + V(2)ys(x) = Eyy(x)

iii) We want to know whether Aw,(z) + Biy(x) is also a solution. To this end we
calculate:

{_%dgg +V(2)} (A¢a(z) + By(2))

= A{ 2m dzﬂpa( ) + (w)zﬁa(x)} + B{ 2m dz2¢b( T) + (x)pr(x)}
= AEqta(z) + BEyby(x)

iv) Since E, is different from Ej, AFE,9.(z) + BEyp(x) can not be rewritten as
E(Avq(z) + Biy(x)). Hence, A, (z) + Bebp(x) is not a solution.

(Avq(z) + Bepp(x) is a solution of the S.S.E only if E = E, = Eb)

(e2) TRUE
0) You may need to study 13.4 to answer this one.
i) T.D.S.E. :

I Grg 4 vEyu ) = il @, (4)

2m ’ ’ ot
(note, as usual, that V is assumed to be time-independent)
i) S.S.E. : i
@) VP (P) = By(P) )

iii) We want to know whether U(7,t) = 4(7) x e~*% is a solution of the T.D.S.E.



To this end, we calculate —%VQ\I/(?,

h2
—%VQ\IJ(?,t) +V(7,0)(7,1)

ov
th—

ot (7.1)

iv) Thus — 2 V2U(7, ) + V(7)U(7
equation is satisfied.

3 Electron Density, Probabil

Solution ITI

t) + V(7?)¥(7,¢t) and iR GL (7, 1):

h? Bt
= {——2mV2—|—V(TJ)}¢(?)Xe’T
_; Bt hZ 2
= e ' {——2 Vv +V(7‘)}¢(F)

= Ep(P)e " (from ii) (6)
5L () x 1%
if= (7, 0(7) x ¢
qp(?)m%e—i%
p(P)in(-ip)e
By(P)e™' % (7)

,t) and ih%—‘f(?,t) are equal. The T.S.D.E.

ity, Normalization

(a) The electron is necessarily somewhere in the one-dimensional space. In other words,

the probability of finding the electron in the

spatial region —oo < z < 400 is 1=100%. Thus,

the wavefunction must satisfy the normality

condition: [ 4*(z)y(x)dz = 1.

(b) To normalize 1 (x), we calculate [ 35 47 (x)y (z)dz.
i) Since 91 () equal to zero outside the box, we have [ 9 (z)1 (x)dx = [§ 7 (x)t1 (z)dz.
ii) Moreover, 11 (z) is a real function. Thus, [ 9} (z)¢1(z)dz = [§ ¥3(z)dz

iii) Using the integral relation [ sin?(
Jo Vi (z)dz = [§' AT sin® (52 )dz = Afg

2
iv) Consequently, 11 () is normalized provided that % =1, that is A; =

T

Finally, 91 (z) = /2 sin(%2)
Similarly, 6 (z) = /2 sin(%22)

nww)
a

dr =4

5, we obtain

2

a



(¢) 1(2), Po(z), ¥7 ()91 (z) = $f(z) and 9g(z)ps(z) = ¥§(x) are plotted on the next
page.
To estimate the probability of finding an electron of wavefunction %1 (z) in the spatial

interval 0 < z < a/2, we can calculate [ /2 13 (x)91(x)dz analytically. It is however simpler

to determine foa/ 2 ¥} (z)1 (z)dz graphically.

i (z)h1(xz) = ?(z) is symmetric with respect to z = a/2. Moreover, the total in-
tegral (area between the curve and the horizontal axis) is equal to 1. As a consequence,
o/ i (@) ()do = 1/2.

The probability of finding an electron of wavefunction 1 (z) in the spatial interval
0<z<a/2is1/2=50%.

With a similar reasoning, from the graph of 9§ (z)ys(z), the probability of finding an
electron of wavefunction 1g(z) in the spatial interval a/3 < z < 2a/3 is 1/3=33.33%.
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4 Spectrum

Problem IV

The first eigenfunctions (wavefunctions satisfying the S.S.E.) for a particle in a box are
shown together with the corresponding eigenvalues (energies of the electron wavefunctions).
The energy scale is shown on the left in units of h?/(8ma?). The graphs of wavefunction
are the oscillating curves. The zero of each wavefunction graph is indicated by the dashed
line.

(cf. Engel, Reid page 323)

10



