1.012 Fundamentals of Materials Science Fall 2005

Lecture 23: 12.05.05 Lattice Models of Materials; Modeling Polymer
Solutions
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Reading: [ Engel and Reid 32.3-32.4
=2 Dill and Bromberg Ch. 15 '‘Solulions & Mixtures,' pp. 267-273
= Dill and Bromberg Ch. 31 'Polymer Solutions,' pp. 593-605.

Supplementary Reading: A Delails of rotational, vibrational, and electronic parition funclions for simple
molecules; Engel and Reid 32.5-32-9
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Last time

The Boiltzmann Factor and Partition Function: systems at constant temperature

=  How do we lreal systems at conslant lemperature in statistical mechames? We needad 1o delermine how
the probability of model microstates depends on temperature. We found the answer by minimizing the

Helmhollz free energy wilh respect to the possible microstate probatulities p. This analysis gave us the
Boltzmann lactor and the partition function:
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Once we had the concept of the partition funclion. we began lackling a first example problem: the Einstein
solid. Atoms of a crystalline solid are assumed o vibrate in x, y. and z with a single well-defined

frequency as quantum mechanical hammonic oscillators. We stanted by solving for the melecular partition
function:
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Fgdm here we delemmined the parition funclion for a system of N non-interacting, identical,
stinguishable oscillators;
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The parition funclion far this simple model allowed calculations of the internal energy and heat capacity

of a crystalline solid:
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A better model: The Debye solid

= The Einstein model makes the simplification of assuming the atoms of the solid vibrate at a single, unique

frequency:
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Frequency distribution g(v) for crystal. (a) Einstein approximation. (b) Debye approximation.
The Debye distribution of frequencies, with

Figure by MIT OCW. the experimental distribution of frequencies

for copper. The distribution is shown as a

function of ® = 2nv. The experimental distribution
is obviously complicated enough that a theory

to reproduce such a distribution would likely

be difficult to produce.

Figure by MIT OCW.

= ‘g’ in Figure 5-4 above from Hill is the distribution of vibrational frequencies present in the crystal. In the
Einstein model, only one vibrational frequency is assumed for all atoms in the crystal. However, atoms
sitting on different lattice sites may have difference accessible vibrational frequencies- which depend on
what neighbors they ‘feel’ around them- this is seen in the complex distribution of vibrational frequencies
shown in Figure 22.8 from Mortimer for a real sample of copper. The Debye model approximates the true
frequency distribution by assuming the distribution shown in Figure 5-4(b): a distribution that is continuous
up to some frequency cut-off (v,). The Debye expression for heat capacity becomes:
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This approximation leads to a heat capacity behavior near zero Kelvin which better captures
experimentally-observed behavior:
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where 6, = {hkv’”} = Debye temperature
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The Debye model performs quite well for predicting the thermal behavior of many solid materials:

25 T
20 -
[
E
o 15 ]
(&)
&
Z
g 10 .
E — Debye
e — Einstein
o 5 © AlOp=385K|
0 | | |
1.6 2.0
T/0
Comparison among the Debye heat capacity, the Einstein heat
capacity, and the actual heat capacity of aluminum.
Figure by MIT OCW.
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Examination of heat capacities of different materials

+ |f heat capacities correlate wilh molecular degrees of freedom in a matenial, we might expect materials
thal have similar degrees of freedom 1o have similar heat capacities. This is in fact seen for many
malerials. Consider first a comparison of the heat capacity in 3 different crystalline non-metals:’

Cp, Ji malsK
90 T T T T T |

N GSEL

"= -

10

&l -

Nacl -

a0 =

-

=
]

3 L)
wefe-

0 i i i i i i
0 S0 100 150 200 250 300 350

Temperature, K

Molar heal capacily al constant pressure of
three crystalline nonmetals.

Figure by MIT OCW.

(e crystal structure from www webelemenls.com})

o Thus in these structurally-relaled crystals, he heat capacity per Na, aloms is very similar, ~3R, or
25 Jimole K. We will show later in the term that this plaleau value can be predicted by treating
the atoms in the solid as a collection of harmonic oscillators.
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Figure by MIT OCW.
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Degrees of freedom in molecular models(1)

Excitations in materials

We modeled the atomic vibrations in a crystalline solid using 3 degrees of freedom- harmonic oscillations
in X, Y, and Z. We saw that a model using only these 3 degrees of freedom provides reasonable
predictions for the behavior of the heat capacity of many solids. Other matenals may have other
important degrees of freedom that we should account for to obtain good statistical mechanics predictions
of their behavior. The important molecular degrees of freedom include:
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Vibration

¢ The electronic glue holding molecules together allows vibrations that store energy:
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Figure by MIT OCW. Vibrational modes of carbon dioxide.
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Complete molecular partition functions

¢ A complex system may have all of these degrees of freedom. To make calculations for a given model, we
need to know how to put these degrees of freedom together in the partition function.

Independent degrees of freedom

= A common approximation is to assume that each degree of freedom in the molecules of the system is
independent, with a unique amount of energy for each possible state of that degree of freedom (let’s use
DOF as an abbreviation for degree of freedom). Thus a molecule with both vibrational and electronic
DOFs has states characterized by one total energy containing independent contributions from the
vibration and electronic excitations:
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ﬁTD‘ML.:

The subscript j refers to the single state that has the given characteristic vibrational and electronic

energy. Because we assume they are independent, the value of £ does not depend on the

value of E7°, and vice versa. The panitical function of w'is sysl%n&%vilh indepquce-apnt DOFs is:
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b Where the independent energies have been split off into partilion functions for each DOF,
Qo and Qeisc:

In general, a complete molecular partition function made up of independent degrees of freedom
can be written as the product of the individual DOF panrition functions:
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Lattice models for translational degrees of freedom

¢ We introduced statistical mechanics as a set of tools for calculating macroscopic thermodynamic
quantities from molecular models. These models can be derived either from quantum mechanics (e.g.
the Einstein solid) or from simpler non-quantum models. There are many cases when the quantum
nature of available energies in the system of interest do not dominate and we can use so-called ‘coarse-
grained’ lattice models to capture the important aspects of the material’s behavior.

LATTLCS
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o Earlier, we have seen that chemical potential models such as the regular solution or ideal solution
mimic some real experimental data reasonably well. However, a question unanswered is- where
did this model come from? What about the regular solution model- how do molecular interactions
give rise to miscibility gaps? Answers to these questions can be found in simple lattice models.

Assumptions in simple lattice models MIXING 2 Molcules A MJD__B_

@ @

= ASSUME:
@ VP = \/B = \/ A lattice mixture of two components A and B. The
I SITe number of A's is N and the number of B's is N,
The total number of lattice sites is N =N, + N,. All
@ ’\ MDD 5 M‘X RKUDON\‘L,T’ sites are filled.
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In this simple lattice model, we assume that only translational degrees of freedom matter in the

determination of possible statistical mechanical states- the states of the system are simply defined by the
number of unique ways the molecules can be arranged on the lattice. We take N for the total number of
molecules (N = N, + Ng). To determine the entropy of mixing, we need the number of distinguishable

states W for the mixed and unmixed components.

For the unmixed pure components, there is only one

distinguishable state (all lattice sites occupied by either A or B), so the entropy is0 (S=kin 1= 0).
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Mixing is a process that begins
with N, molecules of pure A, Np
molecules of pure B, and combines
them into a solution of Ny + Ny
molecules.

Figure by MIT OCW.

These assumptions can be used to derive both the ideal solution model of

the chemical potential and the regular solution chemical potential.

As an example of the utility of lattice models for mate

rials, we will now derive

the entropy and enthalpy of mixing using a simple lattice model for polymer
solutions, based on the Flory-Huggins theory of polymer solutions.

Paul J. Flory's extensive work on Lhe stalistical thermodynamics of

polymers was awarded the nobel prize in chemistry in 1974
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Image removed for copyright reasons.
Photograph of P.J. Flory.
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Flory-Huggins Theory of Polymer Solutions

¢ Flory-Huggins theory was developed to provide a molecular theoretical basis for the free energy behavior
of polymer solutions- to allow predictions of miscibility behavior based on polymer molecular structure.
Thus, our objective is to derive a theoretical description of the free energy of mixing, which can be used to
predict phase diagrams of polymer solutions:

AGmix — f Elmix _ TASmix -9
The entropy of polymer solutions

= To model a polymer solution- a collection of high molecular weight polymer chains mixed with a small-
molecule solvent, we model the polymer chains as beads connected by unbreakable bonds on a cubic
lattice. Solvent molecules fill single sites of the 3D lattice:
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In this lattice model, we are concerned with one degree of freedom in the calculation of the entropy- the
translational entropy:
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»  We are thus looking to derive expressions for W™ and WP Po¥™ " the number of configurations
possible for the polymer + solvent or the polymer alone on a 3D lattice.

CONFIGURATIONS OF A SINGLE CHAIN

We start by looking at the number of ways 1o place a single polymer chain on the lattice;
c What are the number of conformations for firsl bead?

M total sites

L

& With the first bead placed on the latlice, whal is the number of possible locations for the second
segmenl of the chain?

- Z neighboring sites
Excluded volume.

Mumber of availatle
neighbar siles 15 reduced as
chaing fill up the lattice
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o Moving on to placement of the third segment of the chain:

Z-1 available
neighboring sites

o We repeat this process to place all N segments of the chain on the lattice, and arrive at v,, the
total number of configurations for a single chain:

COUNTING CONFIGURATIONS FOR A COLLECTION OF CHAINS

o We can follow the same procedure shown above for a single chain to obtain the number of
configurations possible for an entire set of np chains. We start by placing the FIRST SEGMENT
OF ALL n, CHAINS. The number of configurations for the first segment of all n, chains is
Virst:

o The number of configurations for the (N - 1) remaining segments of all n, chains is vsybsequent:
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o Putting these two configuration counts together, we have the total number of configurations for
the collection of n, chains of N segments each:

W = 4 first Vsubsequent

B v
n,!

= The factor of ny! Corrects for the
over-counting since the polymer
chains are indistinguishable, and we
can't tell the difference between two
configurations with the same
polymer distributions but different
chain identities:

a CHAIN 2

These two possible configurations are indistinguishable in the system.

= We are now ready to calculate the number of unique states for the unmixed and mixed states:
o UNMIXED STATE:

PURE SOLVENT:

EEEttiitiy

Figure by MIT OCW.
Pure Polymer
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Figure by MIT OCW.
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o MIXED STATE:
Nn,+n =M

-1 M
Wsolution - W (M— an)np!

n,(N-1)

A sz'x _ Ssolution _ Sunmixed _ Ssolution _ (Spure solvent 4 Spure polymer )_

_ Ssolution . Spure polymer

_ solution
=k, In——chtion

pure polymer

o Applying Stirling’s approximation: In x!~ xInx — x

o ...arriving at a final result:
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L AS™ =~k [n,Ing,+n,ng, |

AS™™ / koM
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