3.012 Fundamentals of Materials Science Fall 2005

Lecture 22: 12.02.05 The Boltzmann Factor and Partition Function; Thermal
Behavior of the Einstein Solid
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Last time

Two postula O sis of statistical mechanics

1. When U, V, and N are fixed, each allowed microstale is equally probable.
2. The ensemble average of a thermodynamic propenriy is equivalent to the time-averaged macroscopic value of the

property measured for the real syslem. -
U= (D = % PiE;

The microscopic definition of entropy
= Ludwig Bollzmann's ansalz:
v

S — kf’ _lﬂ W= _kb Zp} lnpf indistinguishable particles {(most common case)
J=1

S= kh InQ2 distinguishable particles

o Ilis extensive like the entropy
o Increases with U, like entropy
o Obeys the third law, like entropy

Thef first postulate satisfies the second law

¢ Jusl as the second law diclates the equilibrium macrostate in classical thermodynamics, the second law dictates
whal microstates the system will reside in at equilibrium:
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What next? the problem of probabilities...

= The ensemble of a slatistical mechanical system contains all thermodynamic information of the system
= Al thermodynamic properties of a system can be calculated from the probabilities of the ensemble:

1
U=<]>= Zp_,.]:'_,.

j=1
= The central problem of slatistical mechanics is to determine the probabilities of microstate occupation:

o ...asin classical thermodynamics, we apply the secopd law: find the set of probabilities that maximize the
entropy of the system.
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The Boltzmann factor and Partition function

¢ \We started our discussion of statistical mechanics by looking at fixed (U, V, N) isolated systems. Now, we turn to
the experimentally more interesting case of systems with fixed temperature. The ensemble for fixed (7, V, and N)
includes all possible microstates for the solid that have the same temperature; it is called the canonical
ensemble (‘canonical’ because it is used so often to model real systems).

¢ Recall that for systems with constant (T,V,N), the second law is satisfied when the Helmholtz free energy

(F = U-TS) is a minimum. » bi —_— MMM =D
CoNCTANT LL‘V1 M) F ( AT EquinBrwM

o To determine the equilibrium probability p; for each individual state j, we simply calculate what values of p;
(for each possible state j) minimize the Helmholtz free energy F, subject to the constraint that the p;'s act

like a probability and sumto 1: COVSTRANT
- NSTRAIN I

e I —_o<( = ) = )

gﬁ;} L ZP ‘i_‘P\

e \We want to calculate the minimum in F with respect to p; for all possible states j:

w
F = U-TS = > ~T (vkb z P-‘l"‘Pi)
1=l
bgE . Zf A
o To satisfy the constraint that the p; sum to 1, we use the method of Lagh):mge multipliers. We minimize F with the
constraint included:
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o We define the summation in the denominator as the partition function Q. The importance of this sum

will soon be apparent (for now, at least it simplifies our notation!). *

C - E\ A — o2 M\J\Mf\)

S ACTON

According to the Boltzmann distribution, states of lower energy
are more populated than states of higher energy. As temperature
increases, higher energy states become more populated.

Figure by MIT OCW.
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o The quantity exp(-E/KT) is known as the Boftzmann factor. it is lhe ‘thermal weighting factor’ that
determines how many atoms access a given slate of energy «.. The Boltzmann factor indicates that
states with high energies will nol be accessible at low temperature, but may occur with a high frequency
in the ensemble at high temperature.

All thermodynamic quantities can be calculated from the partition function

¢ The Bollzmann factor and pantition function are the two most imporiant quantities for making siatistical
mechanical calculations. If we have a model for a material for which we can calculate the partition function,
we know everything there is to know about the thermodynamics of that model,

¢ Allthermodynamic quantities of interest can be derived using the panrition function. Using the convenient dummy

variable /5 = 1/k,T, some examples are; C:E.? {
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The partitigr(function of molecules/atoms vs. multi-molecular systems

iS often straightforward to develop models at the molecular level for allowed energies/states (this is what we are
oing in the bonding half of 3.012 right now), and to even write the partition function for individual molecules. But
how do we handle the case when we have a mole of atoms in a system and we want to determine Q? It is not
possible to enumerate all the possible states by hand (or by computer for that matter, today).

o We use a lower-case q to denote the partition function for an individual atom/molecule in our system:

D Oﬁ‘-*“-"‘“'—"t'é 3 PARTITION FUNCX - i — “LvoL —"'_:—\'./(—\
é“' ' For VorE(UE =
€ o o

Sl MOL = MoLscuak. MigRosTATES

o One way to deal with systems comprised of Na, molecules is to assume the molecules/atoms are
independent. If each the N molecules is independent, the microstate of one molecule is not dependent
on the microstate of its neighbors: the wave functions are independent, and the total energy of the system
is simply the sum of the energy eigenvalues for each individual atom:
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o If we then look at the total partition function for the multi-molecular system, we have:
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the atoms/molecules are indistinguishable, then we must add a term to correct for indistinguishable
states:
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= This equation gives us a simple route to making calculations for macroscopic systems from molecular level-
detailed models.
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The Einstein Solid

¢ Now that we have the formula for the probabilities in a system at constant temperature, we can start making some
predictions for our Einstein solid harmonic oscillator model.

The complete partition function for the Einstein solid?

¢ Recall that in the Einstein solid, the atoms are assumed to vibrate in a harmonic potential. The energy of this
confined oscillation is quantized:

E = [n I ljhv 'Y osan L,L,A_\_'OR_%
g 2

¢ We performed microcanonical calculations (fixed E, V,N) for a very imaginary 3-atom, 1D-oscillating solid. If we

take the more realistic case of allowing each atom to oscillate in X, Y, and Z space, we have 3 quantized
energies:
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Figure by MIT OCW.

« The total energy in one microstate (characterized by one set of values ny, ny, n,) for one atom of the solid is:
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¢ |t follows that the molecular partition function for one atom of the solid is:
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e Since the vibration in each of the 3 directions is equivalent (ie. £, (n,=1)=FE, (n,=))=FE, (n,=1)=F, ),
the three sums in Qsom are the same. We can therefore write:

. oo ‘G'“/V—T E Conflete MoOCUTAL
CK z < Partton FuncTioN

n=o

¢ \We showed above that the partition function for a system of N non-interacting distinguishable atoms or molecules
is given by Q = (qa,o,,,)N. Thus, for the partition function of the entire Einstein solid, we have:
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¢ The infinite sum looks messy, but we can simplify this partition function. To shorten the following notation, let's
useﬁi : iil ]
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Finally, substituting, we arrive at the simplified total pantition function for the Einstein solid;

Thermodynamic properties of the Einstein solid**

» Mow that we have the partition function, it is straightforward to determine thermodynamic quantities for the
Einstein solid. First, let's derive the internal energy;
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e This result is a general property of quantum mechanical degrees of freedom where the energy of excitations is
linear with the quantum number (remember here, the energy of the oscillator is E = hv(n + 1/2)). Any such
degree of freedom contributes k,T to the total energy of each molecule.

e Using the internal energy, we can calculate the heat capacity of the Einstein solid:

=
Cv‘”a'rv

o Since p = 1/kT:
(5 4f =-L1
a7 Ere
e Thus we can write the derivative dU/dT in the more convenient form:
CV:-"“_)_) = @E)—)f‘f = -1 (X
(57 v (3/4 V(dT T2\PAN
by
Cy = BN (LYl e

e gt l

e

=  We introduce the ‘Einstein temperature’:

Ens-ﬁﬁlu SoLD
ekl CATACLTY

e Thisres ends only a characteristic temperature related to
the vibrations allowed in the crystal. The Einstein solid heat capacity is plotted below as calculated for Diamond,
compared to the experimentally measured heat capacity- and we see quite good agreement over a broad range
of temperatures.
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o Experimental values of the heat capacity of diamond (®) compared with values calculated by
C the Einstein model ( ), using the characteristic temperature Oyipration = hv/k = 1320K.
Vibrations are frozen out at low temperatures.

Figure by MIT OCW.

o In particular, at high temperatures, we see the limiting behavior of the heat capacity is CV = 3R, correctly
predicting the limiting value of C, observed experimentally for many solids

¢ At low temperatures, the agreement with actual data is not as good:

= Experimentally, Cy is found to approach zero much more quickly for most materials, as approximately C, ~ T’ as
T approaches 0.
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A better model: The Debye solid

= The Einstein model makes the simplification of assuming the atoms of the solid vibrate at a single, unique
frequency:

Density of states g(w)

®/1013 radians s

the experimental distribution of frequencies

for copper. The distribution is shown as a

function of ® = 2wv. The experimental distribution
is obviously complicated enough that a theory

to reproduce such a distribution would likely

be difficult to produce.

’ ! The Debye distribution of frequencies, with

Y — Y — Vml
(a) (b)

Frequency distribution g(v) for crystal. (a) Einstein approximation. (b) Debye approximation.

Figure by MIT OCW. Figure by MIT OCW.

= ‘g’ in Figure 5-4 above from Hill is the distribution of vibrational frequencies present in the crystal. In the Einstein
model, only one vibrational frequency is assumed for all atoms in the crystal. However, atoms sitting on different
lattice sites may have difference accessible vibrational frequencies- which depend on what neighbors they ‘feel’
around them- this is seen in the complex distribution of vibrational frequencies shown in Figure 22.8 from
Mortimer for a real sample of copper. The Debye model approximates the true frequency distribution by
assuming the distribution shown in Figure 5-4(b): a distribution that is continuous up to some frequency cut-off
(vm). The Debye expression for heat capacity becomes:

h |
CV = kb T%g(V)dV
’ ek —1

= This approximation leads to a heat capacity behavior near zero Kelvin which better captures experimentally-
observed behavior:
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3
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where 6, = hkv’" = Debye temperature
b

= The Debye model performs quite well for predicting the thermal behavior of many solid materials:
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Comparison among the Debye heat capacity, the Einstein heat
capacity, and the actual heat capacity of aluminum.

Figure by MIT OCW.
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Examination of heat capacities of different materials

¢ If heat capacities correlate with molecular degrees of freedom in a material, we might expect materials that have
similar degrees of freedom to have similar heat capacities. This is in fact seen for many materials. Consider first
a comparison of the heat capacity in 3 different crystalline non-metals:

Cp, J/ moleK
90 T | | | T T

80— -
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40 -
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20

0 | | | | | |
0 50 100 150 200 250 300 350

Temperature, K

Molar heat capacity at constant pressure of
three crystalline nonmetals.

Figure by MIT OCW.

o Thus in these structurally-related crystals, the heat capacity per Na, atoms is very similar, ~3R, or 25
J/mole K. We will show later in the term that this plateau value can be predicted by treating the atoms in
the solid as a collection of harmonic oscillators.
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Temperature variation of ¢y /3R of nonmetals. (1 mol of diamond, %mol of Rbl, NaCl,
and MgO; and% mol of FeS,.)

Figure by MIT OCW.
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