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Last time 

Two postulates form the basis of statistical mechanics 

1.	 When U, V, and N are fixed, each allowed microstate is equally probable. 
2.	 The ensemble average of a thermodynamic property is equivalent to the time-averaged macroscopic value of the 

property measured for the real system. 

The microscopic definition of entropy 

	 Ludwig Boltzmann’s ansatz: 

! 

S = kb lnW = "kb p j ln p j

j=1

W

#

! 

S = k
b
ln"

indistinguishable particles (most common case) 

distinguishable particles 

o	 It is extensive like the entropy 
o	 Increases with U, like entropy 
o	 Obeys the third law, like entropy 

The first postulate satisfies the second law 

•	 Just as the second law dictates the equilibrium macrostate in classical thermodynamics, the second law dictates 
what microstates the system will reside in at equilibrium: 
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What next? the problem of probabilities… 

	 The ensemble of a statistical mechanical system contains all thermodynamic information of the system 
 All thermodynamic properties of a system can be calculated from the probabilities of the ensemble: 

! 

U =< E >= p jE j

j=1

W

"

	 The central problem of statistical mechanics is to determine the probabilities of microstate occupation: 

o	 …as in classical thermodynamics, we apply the second law: find the set of probabilities that maximize the 
entropy of the system. 

Lecture 22 Systems with Fixed Temperature	 4 of 18 8/14/06 



3.012 Fundamentals of Materials Science	 Fall 2005 

The Boltzmann factor and Partition function 

•	 We started our discussion of statistical mechanics by looking at fixed (U, V, N) isolated systems. Now, we turn to 
the experimentally more interesting case of systems with fixed temperature. The ensemble for fixed (T, V, and N) 
includes all possible microstates for the solid that have the same temperature; it is called the canonical 
ensemble (‘canonical’ because it is used so often to model real systems). 

•	 Recall that for systems with constant (T,V,N), the second law is satisfied when the Helmholtz free energy 
(F = U - TS) is a minimum. 

o	 To determine the equilibrium probability pj for each individual state j, we simply calculate what values of pj 
(for each possible state j) minimize the Helmholtz free energy F, subject to the constraint that the pj’s act 
like a probability and sum to 1: 

•	 We want to calculate the minimum in F with respect to pj for all possible states j: 

•	 To satisfy the constraint that the pj sum to 1, we use the method of Lagrange multipliers. We minimize F with the 
constraint included: 
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o We define the summation in the denominator as the partition function Q. The importance of this sum 
will soon be apparent (for now, at least it simplifies our notation!). 
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o	 The quantity exp(-Ei/kT) is known as the Boltzmann factor: it is the ‘thermal weighting factor’ that 
determines how many atoms access a given state of energy εi. The Boltzmann factor indicates that 
states with high energies will not be accessible at low temperature, but may occur with a high frequency 
in the ensemble at high temperature. 

All thermodynamic quantities can be calculated from the partition function 

•	 The Boltzmann factor and partition function are the two most important quantities for making statistical 
mechanical calculations. If we have a model for a material for which we can calculate the partition function, 
we know everything there is to know about the thermodynamics of that model. 

•	 All thermodynamic quantities of interest can be derived using the partition function. Using the convenient dummy 
variable β = 1/kbT, some examples are: 

! 

U =< E >= "
# lnQ

#$
= kT

2 # lnQ

#T

! 

S = k lnQ+ kT
" lnQ

"T

! 

F =U "TS =< E > "TS = "kbT lnQ

! 

P = "
#F

#V

$ 

% 
& 

' 

( 
) 
T ,N

= kT
# lnQ

#V

$ 

% 
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' 

( 
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T ,N
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The partition function of molecules/atoms vs. multi-molecular systems 

	 It is often straightforward to develop models at the molecular level for allowed energies/states (this is what we are 
doing in the bonding half of 3.012 right now), and to even write the partition function for individual molecules. But 
how do we handle the case when we have a mole of atoms in a system and we want to determine Q? It is not 
possible to enumerate all the possible states by hand (or by computer for that matter, today). 

o	 We use a lower-case q to denote the partition function for an individual atom/molecule in our system: 

o	 One way to deal with systems comprised of NAv molecules is to assume the molecules/atoms are 
independent. If each the N molecules is independent, the microstate of one molecule is not dependent 
on the microstate of its neighbors: the wave functions are independent, and the total energy of the system 
is simply the sum of the energy eigenvalues for each individual atom: 

o	 If we then look at the total partition function for the multi-molecular system, we have: 

o	 If the atoms/molecules are indistinguishable, then we must add a term to correct for indistinguishable 
states: 

 This equation gives us a simple route to making calculations for macroscopic systems from molecular level-
detailed models. 
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The Einstein Solid 

•	 Now that we have the formula for the probabilities in a system at constant temperature, we can start making some 
predictions for our Einstein solid harmonic oscillator model. 

The complete partition function for the Einstein solid2 

•	 Recall that in the Einstein solid, the atoms are assumed to vibrate in a harmonic potential. The energy of this 
confined oscillation is quantized: 

! 

E
n

= n +
1

2

" 

# 
$ 

% 

& 
' hv

•	 We performed microcanonical calculations (fixed E,V,N) for a very imaginary 3-atom, 1D-oscillating solid. If we 
take the more realistic case of allowing each atom to oscillate in X, Y, and Z space, we have 3 quantized 
energies: 
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• The total energy in one microstate (characterized by one set of values nx, ny, nz) for one atom of the solid is: 
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•	 It follows that the molecular partition function for one atom of the solid is: 

•	 Since the vibration in each of the 3 directions is equivalent (i.e. 
the three sums in Qatom are the same. We can therefore write: 

! 

Enx
(nx =1) = Eny

(ny =1) = Enz
(nz =1) = En=1), 

•	 We showed above that the partition function for a system of N non-interacting distinguishable atoms or molecules 
is given by Q = (qatom)N . Thus, for the partition function of the entire Einstein solid, we have: 

•	 The infinite sum looks messy, but we can simplify this partition function. To shorten the following notation, let’s 
use β = 1/kT: 

•	 Using the approximation 

! 

1

1" x
= x

n

n= 0

#

$ (for x2 < 1), we can obtain: 
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•	 Finally, substituting, we arrive at the simplified total partition function for the Einstein solid: 

! 
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Thermodynamic properties of the Einstein solid2,4 

•	 Now that we have the partition function, it is straightforward to determine thermodynamic quantities for the 
Einstein solid. First, let’s derive the internal energy: 
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•	 This result is a general property of quantum mechanical degrees of freedom where the energy of excitations is 
linear with the quantum number (remember here, the energy of the oscillator is E = hν(n + 1/2)). Any such 
degree of freedom contributes kbT to the total energy of each molecule. 

•	 Using the internal energy, we can calculate the heat capacity of the Einstein solid: 

•	 Since β = 1/kT: 

•	 Thus we can write the derivative dU/dT in the more convenient form: 

	 We introduce the ‘Einstein temperature’: 

	 Plugging Θ into the expression for heat capacity we have: 

•	 This result states that the heat capacity of different materials depends only a characteristic temperature related to 
the vibrations allowed in the crystal. The Einstein solid heat capacity is plotted below as calculated for Diamond, 
compared to the experimentally measured heat capacity- and we see quite good agreement over a broad range 
of temperatures. 
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A better model: The Debye solid 

	 The Einstein model makes the simplification of assuming the atoms of the solid vibrate at a single, unique 
frequency: 

	 ‘g’ in Figure 5-4 above from Hill is the distribution of vibrational frequencies present in the crystal. In the Einstein 
model, only one vibrational frequency is assumed for all atoms in the crystal. However, atoms sitting on different 
lattice sites may have difference accessible vibrational frequencies- which depend on what neighbors they ‘feel’ 
around them- this is seen in the complex distribution of vibrational frequencies shown in Figure 22.8 from 
Mortimer for a real sample of copper. The Debye model approximates the true frequency distribution by 
assuming the distribution shown in Figure 5-4(b): a distribution that is continuous up to some frequency cut-off 
(νm). The Debye expression for heat capacity becomes: 

! 

CV = kb
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kbT
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 This approximation leads to a heat capacity behavior near zero Kelvin which better captures experimentally-
observed behavior: 
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 l i ll i i l i li ialThe Debye mode performs qu te we for pred ct ng the therma behav or of many so d mater s: 
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Examination of heat capacities of different materials 

•	 If heat capacities correlate with molecular degrees of freedom in a material, we might expect materials that have 
similar degrees of freedom to have similar heat capacities. This is in fact seen for many materials. Consider first 
a comparison of the heat capacity in 3 different crystalline non-metals:2 

o	 Thus in these structurally-related crystals, the heat capacity per NAv atoms is very similar, ~3R, or 25 
J/mole K. We will show later in the term that this plateau value can be predicted by treating the atoms in 
the solid as a collection of harmonic oscillators. 

Lecture 22 Systems with Fixed Temperature	 16 of 18 8/14/06 

80

70

60

50

50

40

30

20

10

0
0 100 150 200 250 300 350

9R-

6R-

3R-

NiSe2

NaCl

Ge

Temperature, K

Cp, J/ mol.K

90

Molar heat capacity at constant pressure of
three crystalline nonmetals.

Figure by MIT OCW.



3.012 Fundamentals of Materials Science Fall 2005


Lecture 22 Systems with Fixed Temperature 17 of 18 8/14/06 

Rbl NaCl FeS2 MgO

Diamond

1.0

0.8

0.6

0.4

0.2

0
0 100 200 300 400 500 600 700 800 900 1000

Temperature, K

cv /3R

Temperature variation of cv /3R of nonmetals. (1 mol of diamond,    mol of Rbl, NaCl,
and MgO; and    mol of FeS2.)

1
21

3

Figure by MIT OCW.



3.012 Fundamentals of Materials Science Fall 2005 

References 

1. Dill, K. & Bromberg, S. Molecular Driving Forces (New York, 2003). 
2. Cima, M. (2002). 
3. Chabay, R. & Sherwood, B. Matter & Interactions. 
4. Hill, T. L. An Introduction to Statistical Thermodynamics (Dover Publications, Inc., New York, 1986). 
5. Mortimer, R. G. Physical Chemistry (Academic Press, New York, 2000). 
6. Gaskell, D. R. Introduction to Metallurgical Thermodynamics (Hemisphere, New York, 1981). 

Lecture 22 Systems with Fixed Temperature 18 of 18 8/14/06 


