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Last time

A simple model: the Einstein solid

Our introduction to the connection of thermodynamic quantities to microscopic behavior begins by
considering a simple model of a monoatomic crystalline solid- models of materials are the starting
point for statistical mechanics calculations.

Suppose for definiteness we have a crystalline solid: As a model for how this material behaves in
response to temperature, we propose that the most important degree of freedom available to the atoms to
respond to thermal energy is vibration of the atoms about their at-rest positions.

o The bonding between atoms creates a potential energy well in which the atoms are centered at

.W(D their at rest position. Oscillations of the atoms about the at rest position can be induced by
thermal energy in the material. The potential is called a harmonic potential because of its shape-
similar to the potential of a spring in classical mechanics. Because the oscillation of the atoms is
constrained by bonding to center about their at-rest positions in the crystal lattice, the energy of

vibration for each atom is quantized:

O O Q Model for a 3-atom solid as 1D harmonic oscillators
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 ...where his Planck’s constant (h = 6.62x1 s gm cm’ sec'z) and v is the frequency of the atomic

vibrations. The total energy of the solid is the sum of the individual energies of each oscillator:
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Microstates in Isolated Systems _
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o The total number of allowed microstates is a parameter we will refer to again and again; we give it

the symbol Q. For the system above, () = 6. The collection of all €2 microstates for a given
system is called its ensembije. (For the case of a system with fixed (E,V,N) it is referred to as the
microcanonical ensemble).

Distinguishable vs. indistinguishable atoms/particles

+ Two cases arise in modeling real systems: one where we can identify each atom uniquely, and the case
of atoms being identical and indistinguishable.
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e If we had indistinguishable atoms, then we would only be able to observe the unique microstates, whos
number is given the symbol W:

W=2
Unique states: =1 j=2 —_—
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Q=Q, + Q, = 6 total microstates
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& We have collected the individual microstates now into 2 groups characlenzed by the number of
atoms in each energy level (ng, n;, and n-). We will call the set of microstates that has a given set
of occupation numbers a state (as opposed to microstate). The total number of distinguishable
slates is W.

s  For our overy-simplified 3-atom model with a low 1otal energy of Ewe = (7/2)=, the number of distincl
arrangements is small. However, for a malerial conlaining a mole of aloms al room lemperature, the
number of possible ways (0 occupy the available energy levels is enomous. Thus, rather than writing
diagrams of all the possible microstates, we become concemed with the probability of finding a cenain set
of microstates j in the ensemble that have a given distribution of the atoms among the energy levels.

2_ Postuxtes forM, THE Basis OF SN MECH
The first postulate of statistical mechanics

= The first postulate of staustical mechanics lells us the frequency of each of the possible states or
- ing in the ensemble;
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» This postulate is often called the principfe of equal a priori probabilities. It says that if the
microstales have the same energy, volume, and number of particles, then they occur with
equal frequency in the ensemble.

o This postulate tells us what the p's for the two states in our 3-atom E,.=7/2« system are:
*  We have a total of W = 2 states, (3 microstates in each of the two unique states j=1, =2}
Thus the probability for each state is:

Svpbone. OUR. 7 oscuwstals PRANGILM oF . = _|_
Aes (DS T NGUISUABLS * TACL, SWTE. PJ n
W=2 : l
Unique states: =1 =2 —J - i

s W g
Energy 1 o -
(0] [ N —— ?1” w 3.

SThte L STMe 2

= Each slate has a frequency of 50% in the ensemble,
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The second fundamental postulate of statistical mechanics’
The second postulate connects ensemble averages to measured thermodynamic quantities

» Statistical mechanics makes one postulate that connects the energy-level model of a material to its
macroscopic thermodynamic properies,__.

[T| THE EvseMBE WRRAGE OF A THERMODINAMIC PROFSRTY (S

EQUVARNT TO The TMS-AVERAGEY mackoscoPvL VAWS OF
Tixt RoPeRN  Fop Tws “ AL Suegem,

s What it means:
s The pusiulWMﬁe the thermodynamic properties of a matenial if we have
a model that provides us with a way to describe the possible microstates of the system. As we
make a measurement on the real system, we might imagine the atoms in the system
undergoing thermal fluctuations that allow the sysiem to rapidly fluctuate between the
many microstates of our model, making the lime average measurement on the real system
equivalent 1o averaging the property in our ensemble of microstates in the model.

o Mole that though we drew a ‘'mini-ensemble’ for our 3-atom imaginary solid above, the postulate
rigarously holds only when the number of microstates passible is very large. Forlunately, this will
always be the case in models of real malerials containing M., numbers of atomns!

Taking averages in the ensemble:

o Totake an average over the microstates of the ensemble, we assume we have determined the
probabilities of each microstate p. Then the average of some quantity X is given by:

ONSEMBE g_ X{" Vi of ¥ 1N STATS 3
M‘EQFXF<X?-‘.=‘FJJ .
v R PROBABILH OF YIRS )

o Where X is the value of the property X in microsiate /. The second postulate further slales Lthat

the average property over the ensemble is equivalent to the measurable thermodynamic quantity
in a real system. Thus, for example, if we wanl 10 calculate the thermodynamic pressure:

w
P =L = JE:l Pty
Fi’ﬂquﬁ

The second postulate applied to a fixed (E, V, N} system

s We now have whal we need lo make thermodynamic calculations for our collection of hamonic oscillalor
atoms at fixed 1otal energy. Suppose we fix the total energy of the 3-atom (¥ = 3) hamanic ascillator

solid to a value £ = (7/2).. Applying the paslulates {o the 3-atom harmanic oscillator solid, we can predict
the thermodynamic energy.
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o The allowed microstates are sketched in the ensemble above. VWe have a total of 02 = § allowed
microstates that fit the constraints. First, applying the first postulate, we know the probability of
each of the allowed states s p, = p; = 1/2,

o Applying the second postulate, the thermodynamic internal energy is:

_ ale
W=2 ProT Pri (J=<E>= ip,

Unique states: =1 j=2

Energy :12 - F.—:—- P‘ (—‘I d P-'L(lé)

ol e ()

s This result is trivial since we fixed the total energ; -%-Dm. = {72} ]Jut it gets interesting when we consider
the more practical situation of a system held at fixed temperature instead of fixed energy. We'll tackle this

next, after we introduce the microscopic definition of entropy.

KEY CONCEPT: Two postulates that form the basis of statistical mechanics

1. When U, ¥, and N are fixed, each allowed microstate is equally probable.
2. The ensemble average of a thenmodynamic propery is equivalent to the time-averaged macroscopic
value of the properly measured for the real system.
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The microscopic definition of entropy

¢ \We have now seen that we can use an ensemble, a collection of all possible microstates accessible to
the molecules/atoms of a material, to determine thermodynamic properties of a system. Because the
number of microstates is related to the number of degrees of freedom in the material (e.g., how many
energy levels can be accessed), we might expect the number of microstates, Q, to be related to entropy-
and in fact, it is directly related to entropy.

¢ Ludwig Boltzmann sought to connect entropy to the quantum mechanical picture of molecules, and found
an answer in the following simple expression that connects the entropy to the probabilities of each state:

W
= BOCTZIMANNY  CONSTANT
C= —[Cb ZPJ\V\P‘ Rl -
J= J — R (éhs C"Nm@ :[ _J_J
o This is equivalent to the famous expression: N"\/ LAVO@'Q‘X\ L

S = 'Z\O\V\W

Q NDISTINGUVSWABLES MOz/@:foS)

S = lehlv\,_g_, PLeTING. W%Jp’qg

Image removed for copyright reasons.
Photo of Boltzmann's gravesite. Source: http://www.famegraves.com/graves/Vienna/boltzmann.html

o Here Sis the entropy of the system, k,is Boltzmann’s constant ( k, = R/N,, the ideal gas
constant/Avogadro’s number) and Q is the number of microstates available to the system.
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* We can show the equivalence of (Egn 5) and {Eqn 6) easily for the case of the
microcanonical ensemble (a system with fixed (E. V.V)): The probabilities p, = 1AV in the
microcanonical ensemble. therefore:
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That (Eqn 6) is the correct expression for the entropy in statistical mechanics can be shown rigorously,

but we will forgo this more involved derivation here for the sake of time (you can see one derivation, for
example, in Chapter 1 of Hill' )

Testing the microscopic definition of entropy

This simple definition is full of physical meaning for the nature of enlropy. Let's compare the behavior of k
in r2with the required behavior of the classical thermodynamic quantity S

Entropy is an extensive quantity

The statistical mechanical definition of entropy is extensive, just like 5. To see this, consider how
many states are available to a material formed by combining material A having {1, different
microscopic states with material B having {2 microscopic stales:

System A System B System (A + B} S.\.‘ = & + SE
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A
- A
Entropy increases with increasing energy
N

e Entropy increases with E |

o Like the thermodynamic function entropy, kin O and kin (2 increase with increasing energy in a
model system. Consider our 3-atom solid once again:
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¢ The derivative is always positive like T
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The first postulate satisfies the second law

» Just as the second law dictates the equilibrium macrostate in classical thermodynamics, the second law
diclates whal microstafes the system will reside in al equilibrium:
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The Boltzmann factor and Partition function

¢ Last time, we began the process of determining the probabilities of microstate occupation for the
experimentally interesting case of fixed temperature/volume systems: The ensemble for fixed (7, V, and
N) includes all possible microstates for the solid that have the same temperature; it is called the
canonical ensemble (‘canonical’ because it is used so often to model real systems).

¢ Recall that for systems with constant (T,V,N), the second law is satisfied when the Helmholtz free
energy (F= U - TS) is a minimum.

o To determine the equilibrium probability p; for each individual state j, we simply calculate what
values of p; (for each possible state j) minimize the Helmholtz free energy F, subject to the
constraint that the p;'s act like a probability and sum to 1:

e We want to calculate the minimum in F with respect to p; for all possible states j:

o To satisfy the constraint that the p; sum to 1, we use the method of Lagrange multipliers. We minimize F
with the constraint included:

¢ We canfillin U and S in terms of the probabilities of each state:
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